收藏 分享(赏)

2017-2018学年高二数学人教A版选修2-2教师用书:第3章 章末分层突破 WORD版含解析.doc

上传人:高**** 文档编号:800202 上传时间:2024-05-30 格式:DOC 页数:8 大小:373KB
下载 相关 举报
2017-2018学年高二数学人教A版选修2-2教师用书:第3章 章末分层突破 WORD版含解析.doc_第1页
第1页 / 共8页
2017-2018学年高二数学人教A版选修2-2教师用书:第3章 章末分层突破 WORD版含解析.doc_第2页
第2页 / 共8页
2017-2018学年高二数学人教A版选修2-2教师用书:第3章 章末分层突破 WORD版含解析.doc_第3页
第3页 / 共8页
2017-2018学年高二数学人教A版选修2-2教师用书:第3章 章末分层突破 WORD版含解析.doc_第4页
第4页 / 共8页
2017-2018学年高二数学人教A版选修2-2教师用书:第3章 章末分层突破 WORD版含解析.doc_第5页
第5页 / 共8页
2017-2018学年高二数学人教A版选修2-2教师用书:第3章 章末分层突破 WORD版含解析.doc_第6页
第6页 / 共8页
2017-2018学年高二数学人教A版选修2-2教师用书:第3章 章末分层突破 WORD版含解析.doc_第7页
第7页 / 共8页
2017-2018学年高二数学人教A版选修2-2教师用书:第3章 章末分层突破 WORD版含解析.doc_第8页
第8页 / 共8页
亲,该文档总共8页,全部预览完了,如果喜欢就下载吧!
资源描述

1、章末分层突破自我校对1ac,bdabiZ(a,b)ac(bd)i(ac)(bd)i 复数的概念正确确定复数的实、虚部是准确理解复数的有关概念(如实数、虚数、纯虚数、相等复数、共轭复数、复数的模)的前提两复数相等的充要条件是复数问题转化为实数问题的依据求字母的范围时一定要关注实部与虚部自身有意义复数zlog3(x23x3)ilog2(x3),当x为何实数时,(1)zR;(2)z为虚数【精彩点拨】根据复数的分类列方程求解【规范解答】(1)因为一个复数是实数的充要条件是虚部为0,所以由得x4,经验证满足式所以当x4时,zR.(2)因为一个复数是虚数的充要条件是虚部不为0,所以由得x或x3.所以当x且

2、x4时,z为虚数再练一题1(1)设i是虚数单位,若复数a(aR)是纯虚数,则a的值为()A3B1C1D3(2)设复数z满足i(z1)32i(i是虚数单位),则复数z的实部是_【解析】(1)因为aaa(a3)i,由纯虚数的定义,知a30,所以a3.(2)法一:设zabi(a,bR),则i(z1)i(abi1)b(a1)i32i.由复数相等的充要条件,得解得故复数z的实部是1.法二:由i(z1)32i,得z123i,故z13i,即复数z的实部是1.【答案】(1)D(2)1复数的四则运算复数加减乘运算可类比多项式的加减乘运算,注意把i看作一个字母(i21),除法运算注意应用共轭的性质z为实数(1)设

3、i是虚数单位,表示复数z的共轭复数若z1i,则i()A2B2iC2D2i(2)设复数z满足(z2i)(2i)5,则z()【导学号:62952116】A23iB23iC32iD32i【精彩点拨】(1)先求出及,结合复数运算法则求解(2)利用方程思想求解并化简【规范解答】(1)z1i,1i,1i,i1ii(1i)(1i)(1i)2.故选C.(2)由(z2i)(2i)5,得z2i2i2i2i23i.【答案】(1)C(2)A再练一题2已知(12i)43i,则的值为()A.IB.iCiDi【解析】因为(12i)43i,所以2i,所以z2i,所以i.【答案】A复数的几何意义1.复数的几何表示法:即复数za

4、bi(a,bR)可以用复平面内的点Z(a,b)来表示此类问题可建立复数的实部与虚部应满足的条件,通过解方程(组)或不等式(组)求解2复数的向量表示:以原点为起点的向量表示的复数等于它的终点对应的复数;向量平移后,此向量表示的复数不变,但平移前后起点、终点对应的复数要改变(1)在复平面内,复数对应的点位于()A第一象限B第二象限C第三象限D第四象限(2)在复平面内,复数对应的点的坐标为()A(0,1)B(0,1)C. D.【精彩点拨】先把复数z化为复数的标准形式,再写出其对应坐标【规范解答】(1)复数i.复数对应点的坐标是.复数在复平面内对应的点位于第一象限故选A.(2)i,其对应的点为(0,1

5、),故选A.【答案】(1)A(2)A再练一题3(1)已知复数z对应的向量如图31所示,则复数z1所对应的向量正确的是()图31 (2)若i为虚数单位,图32中复平面内点Z表示复数z,则表示复数的点是()图32AE BFCGDH【解析】(1)由题图知,z2i,z12i11i,故z1对应的向量应为选项A.(2)由题图可得z3i,所以2i,则其在复平面上对应的点为H(2,1)【答案】(1)A(2)D转化与化归思想一般设出复数z的代数形式,即zxyi(x,yR),则涉及复数的分类、几何意义、模的运算、四则运算、共轭复数等问题,都可以转化为实数x,y应满足的条件,即复数问题实数化的思想是本章的主要思想方

6、法设zC,满足zR,z是纯虚数,求z.【精彩点拨】本题关键是设出z代入题中条件进而求出z.【规范解答】设zxyi(x,yR),则zxyii,zR,y0,解得y0或x2y21,又zxyiyi是纯虚数x,代入x2y21中,求出y,复数zi.再练一题4满足z是实数,且z3的实部与虚部是相反数的虚数z是否存在?若存在,求出虚数z;若不存在,请说明理由. 【导学号:62952117】【解】设虚数zxyi(x,yR,且y0),则zxyixi,z3x3yi.由已知,得因为y0,所以解得或所以存在虚数z12i或z2i满足题设条件1设(1i)x1yi,其中x,y是实数,则|xyi|()A1B.C.D2【解析】(

7、1i)x1yi,xxi1yi.又x,yR,x1,yx1.|xyi|1i|,故选B.【答案】B2若z12i,则()A1 B1CiDi【解析】因为z12i,则12i,所以z(12i)(12i)5,则i.故选C.【答案】C3设复数z满足i,则|z|()A1B.C.D2【解析】由i,得zi,所以|z|i|1,故选A.【答案】A4设i是虚数单位,则复数在复平面内所对应的点位于()A第一象限B第二象限C第三象限D第四象限【解析】1i,由复数的几何意义知1i在复平面内的对应点为(1,1),该点位于第二象限,故选B.【答案】B5若复数z满足i,其中i为虚数单位,则z()A1iB1iC1iD1i【解析】由已知得i(1i)i1,则z1i,故选A.【答案】A

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3