1、第三章 31 不等关系与不等式学习目标 1.能用不等式(组)表示实际问题的不等关系.2.初步学会作差法比较两实数的大小.3.掌握不等式的基本性质,并能运用这些性质解决有关问题 栏目索引 CONTENTS PAGE 1 预习导学 挑战自我,点点落实 2 课堂讲义 重点难点,个个击破 3 当堂检测 当堂训练,体验成功 预习导学 挑战自我,点点落实 4 3.1 不等关系与不等式下面关于不等式的几个命题正确的有_(1)若ab,则acbc;(2)若ab,则acbc;(3)a与b的和是非负数可表示为ab0;(4)某公路立交桥对通过车辆的高度h“限高4 m”可表示为0h4;(5)设点A与平面的距离为d,B为
2、平面上的任意一点,则有0d|AB|;(6)任意实数a,b之间的大小关系可表示为ab或ab.知识链接 5 3.1 不等关系与不等式解析 对于(2),当c0时,不成立;对于(3),应表示为ab0;其余命题正确 答案(1)(4)(5)(6)6 3.1 不等关系与不等式1.比较实数a,b大小的文字叙述(1)如果ab是正数,那么ab;(2)如果ab等于,那么ab;(3)如果ab是负数,那么ab,反之也成立.预习导引 07 3.1 不等关系与不等式2.比较实数a,b大小的符号表示(1)ab0ab;(2)ab0ab;(3)abbba(对称性);(2)ab,bcac(传递性);8 3.1 不等关系与不等式(3
3、)abacbc(可加性);(4)ab,c0acbc;ab,cb,cdacbd;(6)ab0,cd0acbd;(7)ab0,nN,n1anbn;(8)ab0,nN,n2anbn.课堂讲义 重点难点,个个击破 9 3.1 不等关系与不等式例1 某种杂志原以每本2.5元的价格销售,可以售出8万本.据市场调查,若单价每提高0.1元,销售量就可能相应减少2 000本.若把提价后杂志的定价设为x元,怎样用不等式表示销售的总收入仍不低于20万元呢?要点一 用不等式(组)表示不等关系 10 3.1 不等关系与不等式解 设杂志社的定价为x元,则销售的总收入为x万元,那么不等关系“销售的总收入仍不低于20万元”可
4、以表示为不等式 8x2.50.1 0.28x2.50.1 0.2 x20.11 3.1 不等关系与不等式规律方法 数学中的能力之一就是抽象概括能力,即能用数学语言表示出实际问题中的数量关系.用不等式(组)表示实际问题中的不等关系时:(1)要先读懂题,设出未知量;(2)抓关键词,找到不等关系;(3)用不等式表示不等关系.思维要严密、规范.12 3.1 不等关系与不等式跟踪演练1 如下图,在一个面积为350平方米的矩形地基上建造一个仓库,四周是绿地.仓库的长L大于宽W的4倍.写出L与W的关系.13 3.1 不等关系与不等式解 由题意,得 L10W10350,L4W,L0,W0.14 3.1 不等关
5、系与不等式例2(1)已知x1,比较x31与2x22x的大小.解(1)x31(2x22x)x32x22x1(x3x2)(x22x1)x2(x1)(x1)2(x1)(x2x1)要点二 实数大小的比较 15 3.1 不等关系与不等式x1,x10,(x1)x12234,(x1)x12234 0,x310,ab0,a3b3a2bab2.19 3.1 不等关系与不等式例3 已知a、b、c为实数,判断以下各命题的真假:(1)若ac2bc2,则ab;解 由ac2bc2知c0,c20,ab,故该命题为真命题.要点三 不等式性质的应用 20 3.1 不等关系与不等式(2)若ababb2;a2abb2,故该命题为真
6、命题.解 abaab;又abbb2,21 3.1 不等关系与不等式(3)若ab,1a1b,则a0,bbab0,又1a1b1a1b0baab 0,ab0,ba0,abb,a0,b0,故该命题为真命题.22 3.1 不等关系与不等式规律方法 判断命题的真假,应紧扣不等式的性质,同时要注意条件和结论之间的联系.利用不等式的性质进行不等式的证明时,一定要在理解的基础上记准、记熟不等式的性质,并注意在解题时要灵活、准确地加以应用.23 3.1 不等关系与不等式跟踪演练3 判断下列各命题是否正确,并说明理由:(1)若ca0,则 ab;解 ca01ab,故(1)错.24 3.1 不等关系与不等式(2)若 a
7、b0 且 cd0,则ad bc;故(2)对.解 ab0cd0 adbc0ad bc成立,25 3.1 不等关系与不等式(3)若 ab,ab0,则1ab,cd,则acbd.解 错.例如,当ac1,bd2时,不成立.当堂检测 当堂训练,体验成功 26 3.1 不等关系与不等式1.某校对高一美术生划定录取分数线,专业成绩x不低于95分,文化课总分y高于380分,体育成绩z超过45分,用不等式表示就是()1 2 3 4A.x95y380z45B.x95y380z45C.x95y380z45D.x95y380z4527 3.1 不等关系与不等式解析“不低于”即,“高于”即,“超过”即“”,x95,y38
8、0,z45.答案 D 1 2 3 428 3.1 不等关系与不等式2.已知ab0,bbbaB.abab C.abbaD.abab 解析 由ab0知ab,ab0.又b0,abba.C 1 2 3 429 3.1 不等关系与不等式3.比较(a3)(a5)与(a2)(a4)的大小.解(a3)(a5)(a2)(a4)(a22a15)(a22a8)70.(a3)(a5)0ab;ab0ab;ab0ab.2.作差法比较的一般步骤 第一步:作差;第二步:变形,常采用配方、因式分解等恒等变形手段,将“差”化成“积”;课堂小结33 3.1 不等关系与不等式第三步:定号,就是确定是大于0,等于0,还是小于0.(不确定的要分情况讨论)最后得结论.概括为“三步一结论”,这里的“定号”是目的,“变形”是关键.3.不等式的性质是不等式变形的依据,每一步变形都要严格依照性质进行,千万不可想当然.