收藏 分享(赏)

4.3.3 探索三角形全等的条件(作业)-【上好课】2020-2021学年七年级下册同步备课系列(北师大版).docx

上传人:a**** 文档编号:774185 上传时间:2025-12-14 格式:DOCX 页数:12 大小:84.76KB
下载 相关 举报
4.3.3 探索三角形全等的条件(作业)-【上好课】2020-2021学年七年级下册同步备课系列(北师大版).docx_第1页
第1页 / 共12页
4.3.3 探索三角形全等的条件(作业)-【上好课】2020-2021学年七年级下册同步备课系列(北师大版).docx_第2页
第2页 / 共12页
4.3.3 探索三角形全等的条件(作业)-【上好课】2020-2021学年七年级下册同步备课系列(北师大版).docx_第3页
第3页 / 共12页
4.3.3 探索三角形全等的条件(作业)-【上好课】2020-2021学年七年级下册同步备课系列(北师大版).docx_第4页
第4页 / 共12页
4.3.3 探索三角形全等的条件(作业)-【上好课】2020-2021学年七年级下册同步备课系列(北师大版).docx_第5页
第5页 / 共12页
4.3.3 探索三角形全等的条件(作业)-【上好课】2020-2021学年七年级下册同步备课系列(北师大版).docx_第6页
第6页 / 共12页
4.3.3 探索三角形全等的条件(作业)-【上好课】2020-2021学年七年级下册同步备课系列(北师大版).docx_第7页
第7页 / 共12页
4.3.3 探索三角形全等的条件(作业)-【上好课】2020-2021学年七年级下册同步备课系列(北师大版).docx_第8页
第8页 / 共12页
4.3.3 探索三角形全等的条件(作业)-【上好课】2020-2021学年七年级下册同步备课系列(北师大版).docx_第9页
第9页 / 共12页
4.3.3 探索三角形全等的条件(作业)-【上好课】2020-2021学年七年级下册同步备课系列(北师大版).docx_第10页
第10页 / 共12页
4.3.3 探索三角形全等的条件(作业)-【上好课】2020-2021学年七年级下册同步备课系列(北师大版).docx_第11页
第11页 / 共12页
4.3.3 探索三角形全等的条件(作业)-【上好课】2020-2021学年七年级下册同步备课系列(北师大版).docx_第12页
第12页 / 共12页
亲,该文档总共12页,全部预览完了,如果喜欢就下载吧!
资源描述

1、4.3.3 探索三角形全等的条件一、选择题。1下列命题中,不正确的是()A有两角及其中一角的对边上的高对应相等的两个三角形全等B有两角及其中一角的角平分线对应相等的两个三角形全等C有两边及其中一边上的中线对应相等的两个三角形全等D有两边及其中一边上的高对应相等的两个三角形全等2如图,已知在ABC和DEF中,ABDE,BCEF,下列条件中不能判定ABCDEF的是()AACDFBBECABAC且EDDFDCF3如图,在ABC和DEC中,已知ABDE,添加下列各组条件后,不能使ABCDEC的是()ABCEC,BEBBCDC,ADCBE,ADDBCEC,ACDC4如图,CDFE90,下列条件中,不能判

2、定ACB与DFE全等的是()AAD,ABDEBACDF,BCEFCABDE,BCEFDAD,ABCE5如图,已知ACDB,下列四个条件:AD;ABDDCA;ACBDBC;ABCDCB其中能使ABCDCB的有()A1个B2个C3个D4个二、填空题。6如图,已知ABCDCB,要使ABCDCB,根据“SAS”判定方法,需要再添加的一个条件是 7如图,AE平分CAD,点B在射线AE上,若使ABCABD,则还需添加的一个条件是 (只填一个即可)8如图,AD是ABC的中线,E是AC上的一点,BE交AD于F,已知ACBF,DAC25,EBC30,C 9如图所示,ABAC,ADAE,BACDAE,128,23

3、0,则3 三、解答题。10如图所示,已知点B,E,C,F在一条直线上,ABDF,ACDE,AD求证:ACDE11已知,如图,在等腰直角三角形ABC中,C90,D是AB的中点,点E,F分别是AC,BC上的动点,且始终满足CEBF,(1)证明:DEDF;(2)求EDF的大小;(3)写出四边形ECFD的面积与三角形ABC的面积的关系式,并说明理由12如图,在线段BC上有两点E,F,在线段CB的异侧有两点A,D,且满足ABCD,AEDF,CEBF,连接AF;(1)B与C相等吗?请说明理由(2)若B40,DFC20,若AF平分BAE时,求BAF的度数4.3.3 探索三角形全等的条件一、选择题。1下列命题

4、中,不正确的是()A有两角及其中一角的对边上的高对应相等的两个三角形全等B有两角及其中一角的角平分线对应相等的两个三角形全等C有两边及其中一边上的中线对应相等的两个三角形全等D有两边及其中一边上的高对应相等的两个三角形全等【解答】解:有两角及其中一角的对边上的高对应相等的两个三角形全等,故选项A正确;有两角及其中一角的角平分线对应相等的两个三角形全等,故选项B正确;有两边及其中一边上的中线对应相等的两个三角形全等,故选项C正确;有两边及其中一边上的高对应相等的两个三角形不一定全等,如下图所示:ABEF,ACEG,ABC60,FEG120,则BDGH,而ABC和EFG不全等,故选项D错误;故选:

5、D2如图,已知在ABC和DEF中,ABDE,BCEF,下列条件中不能判定ABCDEF的是()AACDFBBECABAC且EDDFDCF【解答】解:AABDE,BCEF,ACDF,符合全等三角形的判定定理SSS,能推出ABCDEF,故本选项不符合题意;BABDE,BE,BCEF,ACDF,符合全等三角形的判定定理SAS,能推出ABCDEF,故本选项不符合题意;CABAC,DEDF,AD90,ABDE,BCEF,符合判定两直角三角形全等的条件HL,能推出ABCDEF,故本选项不符合题意;DABDE,BCEF,CF,不符合全等三角形的判定定理,不能推出ABCDEF,故本选项符合题意;故选:D3如图,

6、在ABC和DEC中,已知ABDE,添加下列各组条件后,不能使ABCDEC的是()ABCEC,BEBBCDC,ADCBE,ADDBCEC,ACDC【解答】解:A、已知ABDE,再加上条件BCEC,BE可利用SAS证明ABCDEC,故此选项不合题意;B、已知ABDE,再加上条件BCDC,AD不能证明ABCDEC,故此选项符合题意;C、已知ABDE,再加上条件BE,AD可利用ASA证明ABCDEC,故此选项不合题意;D、已知ABDE,再加上条件BCEC,ACDC可利用SSS证明ABCDEC,故此选项不合题意;故选:B4如图,CDFE90,下列条件中,不能判定ACB与DFE全等的是()AAD,ABDE

7、BACDF,BCEFCABDE,BCEFDAD,ABCE【解答】解:A、AD,ABDE,CDFE90,根据AAS判定ACB与DFE全等,不符合题意;B、ACDF,BCEF,CDFE90,根据SAS判定ACB与DFE全等,不符合题意;C、ABDE,BCEF,CDFE90,根据HL判断RtACB与RtDFE全等,不符合题意;D、AD,ABCE,CDFE90,由AAA不能判定ACB与DFE全等,符合题意;故选:D5如图,已知ACDB,下列四个条件:AD;ABDDCA;ACBDBC;ABCDCB其中能使ABCDCB的有()A1个B2个C3个D4个【解答】解:根据SAS,条件,可以使得ABCDCB,故选

8、:A二、填空题。6如图,已知ABCDCB,要使ABCDCB,根据“SAS”判定方法,需要再添加的一个条件是ABCD【解答】解:所添加条件为:ABCD,在ABC和DCB中,ABCDCB(SAS)7如图,AE平分CAD,点B在射线AE上,若使ABCABD,则还需添加的一个条件是ACAD(答案不唯一)(只填一个即可)【解答】解:AE平分CAD,CABDAB,若添加ACAD,在ABC和ABD中,ABCABD(SAS),若添加CD,在ABC和ABD中,ABCABD(AAS),若添加ABCABD,在ABC和ABD中,ABCABD(ASA),故答案为:ACAD(答案不唯一)8如图,AD是ABC的中线,E是A

9、C上的一点,BE交AD于F,已知ACBF,DAC25,EBC30,C100【解答】解:如图,延长AD到M,使得DMAD,连接BM,如图所示:在BDM和CDA中,BDMCDA(SAS),BMACBF,MDAC25,CDBM,BFAC,BFBM,MBFM25,MBF180MBFM130,EBC30,DBMMBFEBC100,CDBM100,故答案为:1009如图所示,ABAC,ADAE,BACDAE,128,230,则358【解答】解:BACDAE,BACDACDAEDAC,1EAC,在BAD和CAE中,BADCAE(SAS),2ABD30,128,31+ABD28+3058,故答案为:58三、解

10、答题。10如图所示,已知点B,E,C,F在一条直线上,ABDF,ACDE,AD求证:ACDE【解答】证明:在ABC和DFE中,ABCDFE(SAS),ACBDEF,ACDE11已知,如图,在等腰直角三角形ABC中,C90,D是AB的中点,点E,F分别是AC,BC上的动点,且始终满足CEBF,(1)证明:DEDF;(2)求EDF的大小;(3)写出四边形ECFD的面积与三角形ABC的面积的关系式,并说明理由【解答】证明:(1)连接CD,如图所示:等腰直角三角形ABC中,C90,D是AB的中点,CDABBD,ECDB45,在ECD和FBD中,ECDFBD(SAS),EDDF,(2)ECDFBD,EDCFDB,EDC+FDCFDB+FDC,即EDFCDB90;(3)结论:,ECDFBD,SECDSFBD,SECD+SFCDSFBD+SFCD,即12如图,在线段BC上有两点E,F,在线段CB的异侧有两点A,D,且满足ABCD,AEDF,CEBF,连接AF;(1)B与C相等吗?请说明理由(2)若B40,DFC20,若AF平分BAE时,求BAF的度数【解答】解:(1)BC,理由如下:CEBF,BECF,在AEB和DFC中,AEBDFC(SSS),BC;(2)AEBDFC,AEBDFC20,EAB180BAEB120,AF平分BAE,BAFBAE60

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 语文

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1