1、椭圆及其性质 一、选择题1(2019北京高考)已知椭圆1(ab0)的离心率为,则()Aa22b2B3a24b2Ca2bD3a4bB由题意,得,则,4a24b2a2,即3a24b2故选B2已知方程1表示焦点在y轴上的椭圆,则实数k的取值范围是()AB(1,)C(1,2)DC由题意得解得1k2故选C3如图,椭圆1(a2)的左、右焦点分别为F1,F2,点P是椭圆上的一点,若F1PF260,那么PF1F2的面积为()ABCDD由题意知|PF1|PF2|2a,|F1F2|24a216,由余弦定理得4a216|PF1|2|PF2|22|PF1|PF2|cos 60,即4a216(|PF1|PF2|)23|
2、PF1|PF2|,|PF1|PF2|,S|PF1|PF2|sin 60,故选D4以椭圆的两个焦点为直径的端点的圆与椭圆交于四个不同的点,顺次连接这四个点和两个焦点恰好组成一个正六边形,那么这个椭圆的离心率为()AB1CDB设椭圆的两个焦点为F1,F2,圆与椭圆交于A,B,C,D四个不同的点,设2c,则c,c由椭圆定义,得2a|DF1|DF2|cc,所以e1,故选B5点P在焦点为F1(4,0)和F2(4,0)的椭圆上,若PF1F2面积的最大值为16,则椭圆标准方程为()A1B1C1D1C由题意,2c8,即c4, PF1F2面积的最大值为16,2cb16,即4b16,b4,a2b2c2161632
3、则椭圆的标准方程为1故选C6已知椭圆C:1(ab0)的左、右顶点分别为A1,A2,点P是椭圆上的动点若A1PA2的最大值可以取到120,则椭圆C的离心率为()ABCDD由题意知,当点P在椭圆的短轴端点处时,A1PA2有最大值,则tan 60,即所以e211,即e,故选D二、填空题7已知椭圆1(ab0)的一个焦点是圆x2y26x80的圆心,且短轴长为8,则椭圆的左顶点为_(5,0)圆的标准方程为(x3)2y21,圆心坐标为(3,0),c3又b4,a5椭圆的焦点在x轴上,椭圆的左顶点为(5,0)8(2019全国卷)设F1,F2为椭圆C:1的两个焦点,M为C上一点且在第一象限,若MF1F2为等腰三角
4、形,则M的坐标为_(3,)不妨令F1,F2分别为椭圆C的左、右焦点,根据题意可知c4因为MF1F2为等腰三角形,所以易知|F1M|2c8,所以|F2M|2a84设M(x,y),则得所以M的坐标为(3,)9已知F1,F2是椭圆的两个焦点,满足120的点M总在椭圆内部,则椭圆离心率的取值范围是_满足120的点M的轨迹是以F1F2为直径的圆,若其总在椭圆内部,则有cb,即c2b2,又b2a2c2,所以c2a2c2,即2c2a2,所以e2,又因为0e1,所以0e三、解答题10已知点P是圆F1:(x1)2y216上任意一点(F1是圆心),点F2与点F1关于原点对称线段PF2的垂直平分线m分别与PF1,P
5、F2交于M,N两点求点M的轨迹C的方程解由题意得F1(1,0),F2(1,0),圆F1的半径为4,且|MF2|MP|,从而|MF1|MF2|MF1|MP|PF1|4|F1F2|2,所以点M的轨迹是以F1,F2为焦点的椭圆,其中长轴长为4,焦距为2,则短半轴长为,所以点M的轨迹方程为111如图所示,已知椭圆1(ab0),F1,F2分别为椭圆的左、右焦点,A为椭圆的上顶点,直线AF2交椭圆于另一点B(1)若F1AB90,求椭圆的离心率;(2)若椭圆的焦距为2,且2,求椭圆的方程解(1)若F1AB90,则AOF2为等腰直角三角形,所以有|OA|OF2|,即bc所以ac,e(2)由题意知A(0,b),
6、F2(1,0),设B(x,y),由2,得解得x,y代入1,得1即1,解得a23所以椭圆方程为11(2021潍坊三模)已知椭圆C:1(ab0)的左、右焦点分别为F1,F2且|F1F2|2,点P(1,1)在椭圆内部,点Q在椭圆上,给出以下四个结论: |QF1|QP|的最小值为21;椭圆C的短轴长可能为2;椭圆C的离心率的取值范围为;若,则椭圆C的长轴长为则上述结论正确的是()ABCDC因为|F1F2|2,所以F2(1,0),|PF2|1,所以|QF1|QP|2|QF2|QP|2|PF2|21,当Q,F2,P三点共线时,取等号,故正确;若椭圆C的短轴长为2,则b1,a2,所以椭圆方程为1,1,则点P
7、在椭圆外,故错误;因为点P(1,1)在椭圆内部,所以1,又ab1,所以ba1,所以1,即a23a10,解得a,所以,所以e,所以椭圆C的离心率的取值范围为,故正确;若,则F1为线段PQ的中点,所以Q(3,1),所以1,又ab1,即a211a90,解得a,所以,所以椭圆C的长轴长为,故正确故选C2(2021重庆模拟)如图所示,用一束与平面成60角的平行光线照射半径为的球O,在平面上形成的投影为椭圆C及其内部,则椭圆C的()A长轴长为3B离心率为C焦距为2D面积为3C由题意知:OBAB,OB,BAO60,OA2,椭圆C长轴长2a2OA4,A错误;椭圆C的短轴长为球O的直径,即2b2,b,c1,椭圆
8、C的焦距为2c2,C正确; 椭圆C的离心率e,B错误;由图可知:椭圆C的面积大于球O大圆的面积,又球O大圆的面积S3, 椭圆C的面积大于3,D错误故选C3(2020全国卷)已知椭圆C:1(0m5)的离心率为,A,B分别为C的左、右顶点(1)求C的方程;(2)若点P在C上,点Q在直线x6上,且|BP|BQ|,BPBQ,求APQ的面积解(1)由题设可得,得m2,所以C的方程为1(2)设P(xP,yP),Q(6,yQ),根据对称性可设yQ0,由题意知yP0由已知可得B(5,0),直线BP的方程为y(x5),所以|BP|yP,|BQ|因为|BP|BQ|,所以yP1,将yP1代入C的方程,解得xP3或3
9、由直线BP的方程得yQ2或8所以点P,Q的坐标分别为P1(3,1),Q1(6,2);P2(3,1),Q2(6,8)|P1Q1|,直线P1Q1的方程为yx,点A(5,0)到直线P1Q1的距离为,故AP1Q1的面积为;|P2Q2|,直线P2Q2的方程为yx,点A到直线P2Q2的距离为,故AP2Q2的面积为综上,APQ的面积为1已知椭圆G:1(0b)的两个焦点分别为F1和F2,短轴的两个端点分别为B1和B2,点P在椭圆G上,且满足|PB1|PB2|PF1|PF2|,当b变化时,给出下列三个命题:点P的轨迹关于y轴对称;|OP|的最小值为2;存在b使得椭圆G上满足条件的点P仅有两个,其中,所有正确命题
10、的序号是_椭圆G:1(0b)的两个焦点分别为F1(,0)和F2(,0),短轴的两个端点分别为B1(0,b)和B2(0,b),设P(x,y),点P在椭圆G上,且满足|PB1|PB2|PF1|PF2|,由椭圆定义可得,|PB1|PB2|2a22b,即有P在椭圆1上,对于,将x换为x方程不变,则点P的轨迹关于y轴对称,故正确;对于,由图像可得,当P满足x2y2,即有6b2b2,即b时,|OP|取得最小值,可得x2y22时,即有|OP|2取得最小值为2,故正确;对于,由图像可得轨迹关于x,y轴对称,且0b,则椭圆G上满足条件的点P有4个,不存在b使得椭圆G上满足条件的点P有2个,故不正确故答案为2(2
11、019全国卷)已知F1,F2是椭圆C:1(ab0)的两个焦点,P为C上的点,O为坐标原点(1)若POF2为等边三角形,求C的离心率;(2)如果存在点P,使得PF1PF2,且F1PF2的面积等于16,求b的值和a的取值范围解(1)连接PF1(图略),由POF2为等边三角形可知在F1PF2中,F1PF290,|PF2|c,|PF1|c,于是2a|PF1|PF2|(1)c,故C的离心率为e1(2)由题意可知,满足条件的点P(x,y)存在当且仅当|y|2c16,1,1,即c|y|16,x2y2c2,1由及a2b2c2得y2又由知y2,故b4由及a2b2c2得x2(c2b2),所以c2b2,从而a2b2c22b232,故a4当b4,a4时,存在满足条件的点P所以b4,a的取值范围为4,)