1、教学目标:(1)知识目标:理解等比数列的前n项和公式的推导方法;掌握等比数列的前n项和公式并能运用公式解决一些简单问题; (2)能力目标:提高学生的建模意识,体会公式探求过程中从特殊到一般的思维方法,渗透方程思想、分类讨论思想; (3)情感目标:培养学生将数学学习放眼生活,用生活眼光看数学的思维品质;教学重点:(1)等比数列的前n项和公式; (2)等比数列的前n项和公式的应用;教学难点:等比数列的前n项和公式的推导;教学方法:问题探索法及启发式讲授法教 具:多媒体教学过程:一、复习提问回顾等比数列定义,通项公式。(1)等比数列定义:(,(2)等比数列通项公式:(3)等差数列前n项和公式的推导方
2、法:倒序相加法。二、问题引入:阅读:“国王的赏赐”。问题:如何计算引出课题:等比数列的前n项和。三、问题探讨:回顾:等差数列的前n项和公式的推导方法。 倒序相加法。 等差数列它的前n项和是 根据等差数列的定义 (1) (2) (1)+(2)得: 探究:等比数列的前n项和公式是否能用倒序相加法推导? 学生讨论分析,得出等比数列的前n项和公式不能用倒序相加法推导。回顾:等差数列前n项和公式的推导方法本质。 构造相同项,化繁为简。探究:等比数列前n项和公式是否能用这种思想推导?根据等比数列的定义: 变形: 具体: 学生分组讨论推导等比数列的前n项和公式,学生不难发现:由于等比数列中的每一项乘以公比都
3、等于其后一项。所以将这一特点应用在前n项和上。由此构造相同项。数学具有和谐美,错位相减,从而化繁为简。 (1) (2)由此构造相同项。数学具有和谐美,错位相减,从而化繁为简。 当q=1时, 当时, 学生经过讨论还发现了其他的推导方法,让学生课后整合自己的思路,将各自的推导过程展示在班级学习园地,同学们共享探究。由等比数列的通项公式推出求和公式的第二种形式: 当时, 四.知识整合:2公式特征:等比数列求和时,应考虑 与 两种情况。当时,等比数列前n项和公式有两种形式,分别都涉及四个量,四个量中“知三求一”。等比数列通项公式结合前n项和公式涉及五个量,五个量中“知三求二”(方程思想)。3等比数列前
4、n项和公式推导方法:错位相减法。五、例题精讲:例1在等比数列an中(1)已知a1=-4,q=1/2,求S10;(2)已知a1=1,ak=243,q=3,求Sk.例2在等比数列an中,S3=7/2,S6=63/2,求an.巩固练习:已知等比数列中, ,,求。 已知等比数列中,,,求n,。 六、课堂小结:1、等比数列的前n项和公式: 当q=1时, 当时, 2、等比数列的前n项和推导方法:错位相减法。3、数学思想:类比,分类讨论,方程的数学思想。七、课后作业: 基础题:课本P61 习题2.5 A组1,2 提高题:求和(探究与发现:查阅网络,思考等比数列前n项和公式还有无其它推导方法? 八、板书设计: 2.5.1等比数列的前n项和 公式: 例1 例2 特征 变式练习: 巩固练习: