ImageVerifierCode 换一换
格式:DOC , 页数:6 ,大小:133KB ,
资源ID:756208      下载积分:6 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-756208-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(江苏省常州市西夏墅中学高中数学教案必修五:等比数列的前N项和(2).doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

江苏省常州市西夏墅中学高中数学教案必修五:等比数列的前N项和(2).doc

1、教学目标:(1)知识目标:理解等比数列的前n项和公式的推导方法;掌握等比数列的前n项和公式并能运用公式解决一些简单问题; (2)能力目标:提高学生的建模意识,体会公式探求过程中从特殊到一般的思维方法,渗透方程思想、分类讨论思想; (3)情感目标:培养学生将数学学习放眼生活,用生活眼光看数学的思维品质;教学重点:(1)等比数列的前n项和公式; (2)等比数列的前n项和公式的应用;教学难点:等比数列的前n项和公式的推导;教学方法:问题探索法及启发式讲授法教 具:多媒体教学过程:一、复习提问回顾等比数列定义,通项公式。(1)等比数列定义:(,(2)等比数列通项公式:(3)等差数列前n项和公式的推导方

2、法:倒序相加法。二、问题引入:阅读:“国王的赏赐”。问题:如何计算引出课题:等比数列的前n项和。三、问题探讨:回顾:等差数列的前n项和公式的推导方法。 倒序相加法。 等差数列它的前n项和是 根据等差数列的定义 (1) (2) (1)+(2)得: 探究:等比数列的前n项和公式是否能用倒序相加法推导? 学生讨论分析,得出等比数列的前n项和公式不能用倒序相加法推导。回顾:等差数列前n项和公式的推导方法本质。 构造相同项,化繁为简。探究:等比数列前n项和公式是否能用这种思想推导?根据等比数列的定义: 变形: 具体: 学生分组讨论推导等比数列的前n项和公式,学生不难发现:由于等比数列中的每一项乘以公比都

3、等于其后一项。所以将这一特点应用在前n项和上。由此构造相同项。数学具有和谐美,错位相减,从而化繁为简。 (1) (2)由此构造相同项。数学具有和谐美,错位相减,从而化繁为简。 当q=1时, 当时, 学生经过讨论还发现了其他的推导方法,让学生课后整合自己的思路,将各自的推导过程展示在班级学习园地,同学们共享探究。由等比数列的通项公式推出求和公式的第二种形式: 当时, 四.知识整合:2公式特征:等比数列求和时,应考虑 与 两种情况。当时,等比数列前n项和公式有两种形式,分别都涉及四个量,四个量中“知三求一”。等比数列通项公式结合前n项和公式涉及五个量,五个量中“知三求二”(方程思想)。3等比数列前

4、n项和公式推导方法:错位相减法。五、例题精讲:例1在等比数列an中(1)已知a1=-4,q=1/2,求S10;(2)已知a1=1,ak=243,q=3,求Sk.例2在等比数列an中,S3=7/2,S6=63/2,求an.巩固练习:已知等比数列中, ,,求。 已知等比数列中,,,求n,。 六、课堂小结:1、等比数列的前n项和公式: 当q=1时, 当时, 2、等比数列的前n项和推导方法:错位相减法。3、数学思想:类比,分类讨论,方程的数学思想。七、课后作业: 基础题:课本P61 习题2.5 A组1,2 提高题:求和(探究与发现:查阅网络,思考等比数列前n项和公式还有无其它推导方法? 八、板书设计: 2.5.1等比数列的前n项和 公式: 例1 例2 特征 变式练习: 巩固练习:

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3