1、2.1.3 分层抽样教学设计(一)-2-一、设计问题,创设情境问题1:中国共产党第十七次代表大会的代表名额原则上是按各选举单位的党组织数、党员人数进行分配的,并适当考虑前几次代表大会代表名额数等因素按照这一分配办法,各选举单位的代表名额,比十六大时都有增加另外,按惯例,中央将确定一部分已经退出领导岗位的老党员作为特邀代表出席大会这种产生代表的方法是简单随机抽样还是系统抽样?分层抽样-3-问题2:(1)假设某地区有高中生2 400人,初中生10 900人,小学生11 000人,此地教育部门为了了解本地区中小学的近视情况及其形成原因,要从本地区的小学生中抽取1%的学生进行调查,你认为应当怎样抽取样
2、本?(2)想一想为什么这样取各个学段的个体数?(3)请归纳分层抽样的定义.(4)请归纳分层抽样的步骤.(5)分层抽样时如何分层?其适用于什么样的总体?-4-二、信息交流,揭示规律(1)分别利用系统抽样在高中生中抽取2 4001%=24人,在初中生中抽取10 9001%=109人,在小学生中抽取11 0001%=110人这种抽样方法称为分层抽样(2)含有个体多的层,在样本中的代表也应该多,即样本从该层中抽取的个体数也应该多这样的样本才有更好的代表性(3)一般地,在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样的方法叫
3、分层抽样(4)分层抽样的步骤:分层:按某种特征将总体分成若干部分(层);按抽样比确定每层抽取个体的个数;各层分别按简单随机抽样或系统抽样的方法抽取样本;综合每层抽样,组成样本-5-三、运用规律,解决问题例1.一个单位有职工500人,其中不到35岁的有125人,35岁至49岁的有280人,50岁以上的有95人,为了了解这个单位职工与身体状况有关的某项指标,要从中抽取100名职工作为样本,职工年龄与这项指标有关,应该怎样抽取?解:用分层抽样来抽取样本,步骤是:(1)分层:按年龄将500名职工分成三层:不到35岁的职工;35岁至49岁的职工;50岁以上的职工.(2)确定每层抽取个体的个数(3)在各层
4、分别按抽签法或随机数表法抽取样本.(4)综合每层抽样,组成样本-6-例2.某高级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,270;使用系统抽样时,将学生统一随机编号1,2,270,并将整个编号依次分为10段如果抽得号码有下列四种情况:7,34,61,88,115,142,169,196,223,250;5,9,100,107,111,121,180,195,200,265;11,38,65,92,119,146,1
5、73,200,227,254;30,57,84,111,138,165,192,219,246,270.关于上述样本的下列结论中,正确的是()A.都不能为系统抽样B.都不能为分层抽样C.都可能为系统抽样D.都可能为分层抽样答案:D-7-四、变练演编,深化提高1.某市的3个区共有高中学生20 000人,且3个区的高中学生人数之比为235,现要从所有学生中抽取一个容量为200的样本,调查该市高中学生的视力情况,试写出抽样过程解:用分层抽样来抽取样本,步骤是:(1)分层:按区将20 000名高中生分成三层.(2)确定每层抽取个体的个数在这3个区抽取的学生数目分别是40、60、100(3)在各层分别按随机数表法抽取样本.(4)综合每层抽样,组成样本2.某单位有老年人28人,中年人54人,青年人81人,为了调查他们的身体状况,从他们中抽取容量为36的样本,最适合抽取样本的方法是()A.简单随机抽样B.系统抽样C.分层抽样D.先从老年人中剔除1人,再用分层抽样答案:D-8-3.请同学们自己编出一个关于我们班为总体的分层抽样的案例,比如说从我们班55名同学中选取10名同学参加足球知识问答比赛等等。五、反思小结,观点提炼本节课学习了分层抽样的定义及其实施步骤六、作业精选,巩固提高作业:P64A4.5.6.课后巩固:见本节学案