1、1曲线yxex1在点(1,1)处切线的斜率等于()A2e BeC2 D1答案C解析yxex1x(ex1)(1x)ex1,曲线在点(1,1)处的切线斜率为y|x12.故选C.2.下列四个图象中,有一个是函数f(x)x3ax2(a24)x1(aR,a0)的导函数yf(x)的图象,则f(1)()A. B.C D1答案C解析f(x)x22ax(a24),由a0,结合导函数yf(x)的图象,知导函数图象为,从而可知a240,解得a2或a2,再结合0知a0)上点P处的切线垂直,则P的坐标为_答案(1,1)解析yex,则yex在点(0,1)处的切线的斜率k切1,又曲线y(x0)上点P处的切线与yex在点(0
2、,1)处的切线垂直,所以y(x0)在点P处的切线的斜率为1,设P(a,b),则曲线y(x0)上点P处的切线的斜率为y|xaa21,可得a1,又P(a,b)在y上,所以b1,故P(1,1)5若曲线yxln x上点P处的切线平行于直线2xy10,则点P的坐标为_答案(e,e)解析yln x1,设P(x0,y0),ln x012得x0e,则y0e,P点坐标为(e,e)6若对于曲线f(x)exx(e为自然对数的底数)的任意切线l1,总存在曲线g(x)ax2cosx的切线l2,使得l1l2,则实数a的取值范围为_答案1,2解析易知函数f(x)exx的导数为f(x)ex1,设l1与曲线f(x)exx的切点
3、为(x1,f(x1),则l1的斜率k1ex11.易知函数g(x)ax2cosx的导数为g(x)a2sinx,设l2与曲线g(x)ax2cosx的切点为(x2,g(x2),则l2的斜率k2a2sinx2.由题设可知k1k21,从而有(ex11)(a2sinx2)1,a2sinx2,故由题意知对任意x1,总存在x2使得上述等式成立,则有y1的值域是y2a2sinx2值域的子集,则(0,1)a2,a2,则1a2.7已知函数f(x)ax33x26ax11,g(x)3x26x12和直线m:ykx9,且f(1)0.(1)求a的值;(2)是否存在实数k,使直线m既是曲线yf(x)的切线,又是曲线yg(x)的
4、切线?如果存在,求出k的值;如果不存在,请说明理由解(1)由已知得f(x)3ax26x6a,f(1)0,3a66a0,a2.(2)存在由已知得,直线m恒过定点(0,9),若直线m是曲线yg(x)的切线,则设切点为(x0,3x6x012)g(x0)6x06,切线方程为y(3x6x012)(6x06)(xx0),将(0,9)代入切线方程,解得x01.当x01时,切线方程为y9;当x01时,切线方程为y12x9.由(1)知f(x)2x33x212x11,由f(x)0得6x26x120,解得x1或x2.在x1处,yf(x)的切线方程为y18;在x2处,yf(x)的切线方程为y9,yf(x)与yg(x)的公切线是y9.由f(x)12得6x26x1212,解得x0或x1.在x0处,yf(x)的切线方程为y12x11;在x1处,yf(x)的切线方程为y12x10;yf(x)与yg(x)的公切线不是y12x9.综上所述,yf(x)与yg(x)的公切线是y9,此时k0.