1、(数学必修2)第二章 点、直线、平面之间的位置关系提高训练C组一、选择题1设是两条不同的直线,是三个不同的平面,给出下列四个命题: 若,则 若,则 若,则 若,则 其中正确命题的序号是 ( )A和B和C和D和2若长方体的三个面的对角线长分别是,则长方体体对角线长为( ) A B C D3在三棱锥中,底面,则点到平面的距离是( ) A B C D4在正方体中,若是的中点,则直线垂直于( ) A B C D5三棱锥的高为,若三个侧面两两垂直,则为的( )A内心 B外心 C垂心 D重心6在四面体中,已知棱的长为,其余各棱长都为,则二面角 的余弦值为( )A B C D 7四面体中,各个侧面都是边长为
2、的正三角形,分别是和的中点,则异面直线与所成的角等于( )A B C D二、填空题1点到平面的距离分别为和,则线段的中点到平面的距离为_2从正方体的八个顶点中任取三个点为顶点作三角形,其中直角三角形的个数为_。3一条直线和一个平面所成的角为,则此直线和平面内不经过斜足的所有直线所成的角中最大的角是_4正四棱锥(顶点在底面的射影是底面正方形的中心)的体积为,底面对角线的长为,则侧面与底面所成的二面角等于_。5在正三棱锥(顶点在底面的射影是底面正三角形的中心)中,,过作与分别交于和的截面,则截面的周长的最小值是_ 三、解答题1正方体中,是的中点求证:平面平面2求证:三个两两垂直的平面的交线两两垂直
3、。3.在三棱锥中,是边长为的正三角形,平面平面,、分别为的中点。()证明:;()求二面角-的大小;()求点到平面的距离。第二章 点、直线、平面之间的位置关系 提高训练C组答案一、选择题 1 A 若,则,而同平行同一个平面的两条直线有三种位置关系 若,则,而同垂直于同一个平面的两个平面也可以相交2C 设同一顶点的三条棱分别为,则得,则对角线长为3B 作等积变换4B 垂直于在平面上的射影5C 6C 取的中点,取的中点,7C 取的中点,则,在中,二、填空题1.或 分在平面的同侧和异侧两种情况2. 每个表面有个,共个;每个对角面有个,共个3. 垂直时最大 4. 底面边长为,高为, 5. 沿着将正三棱锥侧面展开,则共线,且三、解答题:略