收藏 分享(赏)

2023届高三数学 寒假二轮微专题45讲 34.doc

上传人:高**** 文档编号:728583 上传时间:2024-05-30 格式:DOC 页数:3 大小:258.50KB
下载 相关 举报
2023届高三数学 寒假二轮微专题45讲 34.doc_第1页
第1页 / 共3页
2023届高三数学 寒假二轮微专题45讲 34.doc_第2页
第2页 / 共3页
2023届高三数学 寒假二轮微专题45讲 34.doc_第3页
第3页 / 共3页
亲,该文档总共3页,全部预览完了,如果喜欢就下载吧!
资源描述

1、圆锥曲线的双切线处理技巧1.知识要点.这道试题主要的点在算理,即计算中如何合理的处理双切线,我总结如下:已知曲线外一点,向二次曲线引两条切线,设.第1步:分别写出切线的方程(注意斜率);第2步:联立与曲线的方程,利用相切条件,得到代数关系,式从而以的或坐标为参数,进一步构造点横或纵坐标满足的同构方程方程;第3步:利用方程根与系数的关系判断与曲线的位置关系,或完成其他问题.1抛物线C的顶点为坐标原点O焦点在x轴上,直线l:交C于P,Q两点,且已知点,且与l相切(1)求C,的方程;(2)设是C上的三个点,直线,均与相切判断直线与的位置关系,并说明理由【详解】(1)依题意设抛物线,所以抛物线的方程为

2、,与相切,所以半径为,所以的方程为;(2)设若斜率不存在,则方程为或,若方程为,根据对称性不妨设,则过与圆相切的另一条直线方程为,此时该直线与抛物线只有一个交点,即不存在,不合题意;若方程为,根据对称性不妨设则过与圆相切的直线为,又,此时直线关于轴对称,所以直线与圆相切;若直线斜率均存在,则,所以直线方程为,整理得,同理直线的方程为,直线的方程为,与圆相切,整理得,与圆相切,同理所以为方程的两根,到直线的距离为:,所以直线与圆相切;综上若直线与圆相切,则直线与圆相切.解析几何试题知识点多、运算量大、能力要求高,综合性强,在高考试题中大都是以压轴题的面貌出现,是考生“未考先怕”的题型,不是怕解题无思路,而是怕解题过程中繁杂的运算. 而选取什么量可将题目中的信息联系起来,又如何将已知信息转化到所设变量上去,困惑到底开始是“设点”还是“设线,因此,在遵循“设列解”程序化解题的基础上,先突出解析几何“设”的重要性,以克服平时重思路方法、轻运算技巧的顽疾,突破如何避繁就简这一瓶颈.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3