1、2012届高考数学二轮复习专题十:选择题的解题方法与技巧【重点知识回顾】 高考数学选择题占总分值的 其解答特点是“四选一”,快速、准确、无误地选择好这个“一”是十分重要的 选择题和其它题型相比,解题思路和方法有着一定的区别,产生这种现象的原因在于选择题有着与其它题型明显不同的特点:立意新颖、构思精巧、迷惑性强、题材内容相关相近,真假难分;技巧性高、灵活性大、概念性强、题材内容储蓄多变、解法奇特;知识面广、跨度较大、切入点多、综合性强 正因为这些特点,使得选择题还具有区别与其它题型的考查功能:能在较大的知识范围内,实现对基础知识、基本技能和基本思想方法的考查;能比较确切地考查考生对概念、原理、性
2、质、法则、定理和公式的掌握和理解情况;在一定程度上,能有效地考查逻辑思维能力,运算能力、空间想象能力及灵活和综合地运用数学知识解决问题的能力【典型例题】 (一)直接法直接从题目条件出发,运用有关概念、性质、定理、法则和公式等知识,通过严密的推理和准确的运算,从而得出正确的结论,然后对照题目所给出的选择支“对号入座”作出相应的选择、涉及概念、性质的辨析或运算较简单的题目常用直接法例1、关于函数,看下面四个结论: 是奇函数;当时,恒成立;的最大值是;的最小值是其中正确结论的个数为: A1个 B2个 C3个 D4个【解析】, 为偶函数,结论错;对于结论,当时, ,结论错 又,从而,结论错 中,等号当
3、且仅当x=0时成立,可知结论正确【题后反思】 直接法是解答选择题最常用的基本方法,低档选择题可用此法迅速求解,直接法运用的范围很广,只要运算正确必能得到正确的答案,提高直接法解选择题的能力,准确地把握中档题的“个性”,用简便方法巧解选择题,是建在扎实掌握“三基”的基础上的,否则一味求快则会快中出错(二)排除法 排除法也叫筛选法或淘汰法,使用排除法的前提条件是答案唯一,具体的做法是采用简捷有效的手段对各个备选答案进行“筛选”,将其中与题干相矛盾的干扰支逐一排除,从而获得正确结论xyOxyOxyOxyO例2、直线与圆的图象可能是:A B C D【解析】由圆的方程知圆必过原点,排除A、C选项,圆心(
4、a,-b),由B、D两图知直线方程可化为,可知应选B【题后反思】 用排除法解选择题的一般规律是: (1)对于干扰支易于淘汰的选择题,可采用筛选法,能剔除几个就先剔除几个; (2)允许使用题干中的部分条件淘汰选择支; (3)如果选择支中存在等效命题,那么根据规定-答案唯一,等效命题应该同时排除; (4)如果选择支存在两个相反的,或互不相容的判断,那么其中至少有一个是假的; (5)如果选择支之间存在包含关系,必须根据题意才能判定 (三)特例法 特例法也称特值法、特形法 就是运用满足题设条件的某些特殊值、特殊关系或特殊图形对选项进行检验或推理,从而得到正确选项的方法,常用的特例有特殊数值、特殊数列、
5、特殊函数、特殊图形、特殊角、特殊位置等例3、设函数,若,则的取值范围为:A(-1,1) B() C D【解析】,不符合题意,排除选项A、B、C,故应选DxyO12例4、已知函数的图像如图所示,则b的取值范围是:A B C(1,2) D【解析】设函数,此时【题后反思】这类题目若是脚踏实地地求解,不仅运算量大,而且极易出错,而通过选择特殊点进行运算,既快又准,但要特别注意,所选的特殊值必须满足已知条件(四)验证法又叫代入法,就是将各个选择项逐一代入题设进行检验,从而获得正确的判断,即将各个选择支分别作为条件,去验证命题,能使命题成立的选择支就是应选的答案例5、在下列四个函数中,满足性质:“对于区间
6、(1,2)上的任意,恒成立”的只有:A B C D【解析】当时, ,所以恒成立,故选A例6、若圆上恰有相异两点到直线的距离等于1,则r的取值范围是:A4,6 B C D【解析】圆心到直线的距离为5,则当时,圆上只有一个点到直线的距离为1,当时,圆上有三个点到直线的距离等于1,故应选D【题后反思】代入验证法适用于题设复杂、结论简单的选择题,这里选择把选项代入验证,若第一个恰好满足题意就没有必要继续验证了,大大提高了解题速度(五)数形结合法“数缺形时少直观,形少数时难入微”,对于一些具体几何背景的数学题,如能构造出与之相应的图形进行分析,则能在数形结合,以形助数中获得形象直观的解法xy-3-2-1
7、123Y=f(x)例7、若函数满足,且时,则函数的图像与函数的图像的交点个数为:A2 B3 C4 D无数个【解析】由已知条件可做出函数及的图像,如下图,由图像可得其交点的个数为4个,故应选C例8、设函数,若若,则的取值范围为:xy1-11OA(-1,1) B C() D【解析】在同一直角坐标系中,做出函数和直线x=1的图像,它们相交于(-1,1)和(1,1)两点,则,得,故选D【题后反思】严格地说,图解法并非属于选择题解题思路范畴,而是一种数形结合的解题策略,但它在解有关选择题时非常简便有效,不过运用图解法解题一定要对有关函数图象、方程曲线、几何图形较熟悉,否则错误的图像反会导致错误的选择(六
8、)逻辑分析法 分析法就是根据结论的要求,通过对题干和选择支的关系进行观察分析、寻求充分条件,发现规律,从而做出正确判断的一种方法,分析法可分为定性分析法和定量分析法例9、若定义在区间(-1,0)内的函数满足,则a的取值范围是:A B C D【解析】要使成立,只要2a和x+1同时大于1或同时小于1成立,当时,则,故选A1 2 31 3 22 1 3 2 3 1 3 2 1 3 1 2 例10、用n个不同的实数可得个不同的排列,每个排列为一行写成一个行的矩阵,对第i行,记,()例如用1、2、3排数阵如图所示,由于此数阵中每一列各数之和都是12,所以,那么用1,2,3,4,5形成的数阵中,A-360
9、0 B1800 C-1080 D-720【解析】时,每一列之和为,时,每一列之和为,故选C【题后反思】分析法实际是一种综合法,它要求在解题的过程中必须保持和平的心态、仔细、认真的去分析、学习、掌握、验证学习的结果,再运用所学的知识解题,对考察学生的学习能力要求较高(七)极端值法 从有限到无限,从近似到精确,从量变到质变,应用极端值法解决某些问题,可以避开抽象、复杂的运算,隆低难度,优化解题过程例11、对任意都有:A BC D【解析】当时,故排除A、B,当时,故排除C,因此选D例12、设,且,则A BC D【解析】,令,则,易知:,故应选A【题后反思】有一类比较大小的问题,使用常规方法难以奏效(
10、或过于繁杂),又无特殊值可取,在这种情况下,取极限往往会收到意想不到的效果(八)估值法由于选择题提供了唯一正确的选择支,解答又无需过程,因此可通过猜测、合情推理、估算而获得答案,这样往往可以减少运算量,避免“小题大做”ABCDEF例13、如图,在多面体ABCDEF中,已知面ABCD是边长为3的正方形,EF/AB,EF与面AC的距离为2,则该多面体的体积为:A B5 C6 D【解析】由已知条件可知,EF/面ABCD,则F到平面ABCD的距离为2,而该多面体的体积必大于6,故选D例14、已知过球面上A、B、C三点的截面和球心的距离等于球半径的一半,且AB=BC=CA=2,则球面面积是:A B C
11、D【解析】设球的半径为R,的外接圆半径,则,故选D【题后反思】有些问题,由于受条件限制,无法(有时也没有必要)进行精确的运算和判断,而又能依赖于估算,估算实质上是一种数字意义,它以正确的算理为基础,通过合理的观察、比较、判断、推理,从而做出正确的判断、估算、省去了很多推导过程和比较复杂的计算,节省了时间,从而显得快捷其应用广泛,它是人们发现问题、研究问题、解决问题的一种重要的运算方法(九)割补法ABCD“级割善补”是解决几何问题常用的方法,巧妙地利用割补法,可以将不规则的图形转化为规则的图形,这样可以使问题得到简化,从而缩短解题时间例15、一个四面体的所有棱长都为,四个顶点在同一球面上,则此球
12、的表面积为:A B C D【解析】如图,将正四面体ABCD补成正方体,则正四面体、正方体的中心与其外接球的球心共一面,因为正四面体棱长为,所以正方体棱长为1,从而外接球半径,故,选A【题后反思】“割”即化整为零,各个击破,将不易求解的问题,转化为易于求解的问题;“补”即代分散不集中,着眼整体,补成一个“规则图形”来解决问题,当我们遇到不规则的几何图形或几何体时,自然要想到“割补法”【模拟演练】(1)已知是锐角,且,则的取值范围是:A B C D (2)(2007,安徽高考)若,则A交B补中元素的个数为:A0 B1 C2 D3 (3)(2007,山东高考)已知集合,则A B C D (4)过原点
13、的直线与圆相切,若切点在第三象限,则该直线的方程是:A B C D (5)如果n是正偶数,则A B C D (6)函数,则区间a,b上是增函数,且,则函数在a,b上是:A增函数 B减函数 C有最大值M D有最小值M(7)函数的最小正周期是:A B C2 D4 (8)过点A(1,-1),B(-1,1)且圆心在直线上的圆的方程是: A BC DxyO3O (9)定义在上的奇函数,在上为增函数,当时,的图像如下图所示,则不等式的解集是:A BC D (10)函数的图像与函数的图像交点的个数为: A1 B2 C3 D4ABCDEF (11)如下图,在多面体ABCDEF中,已知ABCD是边长为1的正方形
14、,且均为正三角形,EF/AB,EF=2,则该多面体的体积为: A B C D ABCC1B1A1PQ(12)如下图,直三棱柱ABCA1B1C1的体积为V,P、Q分别为侧棱AA1、和CC1上的点,且AP=C1Q,则四棱锥BA1PQC的体积为: A B C DABCDA1C1B1D1GHFOE(13)如右图所示,在正方体AC1中,E为AD的中点,O为侧面AA1B1B的中心,F为CC1上任意一点,则异面直线OF与BE所成的角是: A B C D(14)要得到函数的图像,只需把函数的图像: A向右平移个单位 B向左平移个单位C向右平移个单位 D向左平移个单位(15)函数的定义域为a,b,值域为0,2,
15、则区间a,b的长度b-a的最小值是: A2 B C3 D(16)已知函数,正实数a,b,c满足,若实数d是函数的一个零点,那么下列四个判断:db;dc,其中可能成立的个数为: A1 B2 C3 D4(17)设函数,则使得成立的m的取值为: A10 B0,-1 C0,-2,10 D1,-1,11(18)已知点P是椭圆上的动点,F1,F2分别为椭圆的左右焦点,O为坐标原点,则的取值范围是: A B C D答案:(1)D (2)C (3)B (4)C (5)B (6)C (7)B (8)C (9)A(10)C (11)A (12)B (13)D (14)C (15)D (16)B (17)D (18)D.精品资料。欢迎使用。.精品资料。欢迎使用。高考资源网w。w-w*k&s%5¥u高考资源网w。w-w*k&s%5¥u