1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版数学八年级上册期末专项测评试题 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、图中的小正方形边长都相等,若,则点Q可能是图中的()A点DB点CC
2、点BD点A2、若中,则一定是()A锐角三角形B钝角三角形C直角三角形D任意三角形3、下列运算正确的是()ABCD4、已知 ,则 的值是()ABC2D-25、如图,OB平分AOC,D、E、F分别是射线OA、射线OB、射线OC上的点,D、E、F与O点都不重合,连接ED、EF若添加下列条件中的某一个就能使DOEFOE,你认为要添加的那个条件是()AOD=OEBOE=OFCODE =OEDDODE=OFE二、多选题(5小题,每小题4分,共计20分)1、下列运算错误的是()ABCD2、下列平面图形中,是轴对称图形的是()ABCD3、知:如图,点P在线段外,且,求证:点P在线段的垂直平分线上在证明该结论时
3、,需添加辅助线,则作法正确的是() 线 封 密 内 号学级年名姓 线 封 密 外 A作的平分线交于点CB过点P作于点C且C取中点C,连接D过点P作,垂足为C4、在下列正多边形组合中,能铺满地面的是()A正八边形和正方形B正五边形和正八边形C正六边形和正三角形D正三角形和正方形5、下列计算正确的是()ABCD第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、如图,在中,点,都在边上,若,则的长为_.2、若,则_3、分式的值比分式的值大3,则x为_4、当x_时,分式有意义5、在平面直角坐标系中,点 P( - 2,1)关于 x 轴的对称点的坐标为_四、解答题(5小题,每小题8分
4、,共计40分)1、已知:如图,点在上,且求证:2、计算:(1)(2)3、先化简再求值:,其中x=-24、计算:(1)a 6a 22a 3a;(2)2x 线 封 密 内 号学级年名姓 线 封 密 外 (x2y )(xy)25、先化简,再求值:(a+)(a)+a(a6),其中a-参考答案-一、单选题1、A【解析】【分析】根据全等三角形的判定即可解决问题【详解】解:观察图象可知MNPMFD故选:A【考点】本题考查全等三角形的判定,解题的关键是熟练掌握基本知识,属于中考常考题型2、B【解析】【分析】根据三角形内角和180,求出最大角C,直接判断即可.【详解】解:A:B:C=1:2:4设A=x,则B=2
5、x,C=4x,根据三角形内角和定理得到:x+2x+4x=180,解得:x=则C=4= ,则ABC是钝角三角形故选B.【考点】本题考查了三角形按角度的分类.3、B【解析】【分析】分别根据同底数幂的除法法则,同底数幂的乘方法则,多项式乘以多项式法则以及单项式乘以单项式法则逐一判断即可【详解】解:A. ,故本选项不符合题意;B,正确,故本选项符合题意;C,故本选项不合题意;D,故本选项不合题意故选:B【考点】 线 封 密 内 号学级年名姓 线 封 密 外 本题主要考查了整式的乘除运算,熟记相关的运算法则是解答本题的关键4、C【解析】【分析】将条件变形为,再代入求值即可得解【详解】解:,故选:C【考点
6、】本题主要考查了分式的化简,将条件变形为是解答本题的关键5、D【解析】【分析】根据OB平分AOC得AOB=BOC,又因为OE是公共边,根据全等三角形的判断即可得出结果【详解】解:OB平分AOCAOB=BOC当DOEFOE时,可得以下结论:OD=OF,DE=EF,ODE=OFE,OED=OEFA答案中OD与OE不是DOEFOE的对应边,A不正确;B答案中OE与OF不是DOEFOE的对应边,B不正确;C答案中,ODE与OED不是DOEFOE的对应角,C不正确;D答案中,若ODE=OFE,在DOE和FOE中, DOEFOE(AAS)D答案正确故选:D【考点】本题考查三角形全等的判断,理解全等图形中边
7、和角的对应关系是解题的关键二、多选题1、ABD【解析】【分析】由积的乘方判断 由负整数指数幂的含义判断 由同底数幂的除法判断 由积的乘方与单项式除以单项式判断 从而可得答案.【详解】解:,故符合题意; 线 封 密 内 号学级年名姓 线 封 密 外 故符合题意;故不符合题意;故符合题意;故选:【考点】本题考查的是积的乘方运算,负整数指数幂的含义,同底数幂的除法运算,单项式除以单项式的运算,掌握以上运算的运算法则是解题的关键.2、ACD【解析】【分析】根据轴对称图形的定义:一个图形延一条直线对着,直线两旁的部分能够完全重合,那么这个图形叫轴对称图形,逐个判断即可【详解】解:A是轴对称图形,故本选项
8、符合题意;B不是轴对称图形,故本选项不符合题意;C是轴对称图形,故本选项符合题意;D是轴对称图形,故本选项符合题意;故选:ACD【考点】本题考查了轴对称图形的定义,熟悉相关定义是解题的关键3、ACD【解析】【分析】利用全等三角形的判定对各个选项逐个判断即可得出结论【详解】解:A、利用判断出,点在线段的垂直平分线上,符合题意;B、过线段外一点作已知线段的垂线,不能保证也平分此条线段,不符合题意;C、利用判断出,点在线段的垂直平分线上,符合题意;D、利用判断出,点在线段的垂直平分线上,符合题意;故选:ACD【考点】此题主要考查了全等三角形的判定,线段垂直平分线的判定,熟练掌握全等三角形的判定方法是
9、解本题的关键4、ACD【解析】【分析】正多边形的组合能否铺满地面,关键是看位于同一顶点处的几个角之和能否为360若能,则说明能铺满;反之,则说明不能铺满【详解】解:A、正方形的每个内角是90,正八边形的每个内角是135,由于902135360,故能铺满,符合题意;B、正五边形和正八边形内角分别为108、135,显然不能构成360的周角,故不能铺满,不合题意;C、正六边形和正三角形内角分别为120、60,由于604120360,故能铺满,符合题意; 线 封 密 内 号学级年名姓 线 封 密 外 D、正三角形、正方形内角分别为60、90,由于603902360,故能铺满,符合题意故选:ACD【考点
10、】本题考查了平面密铺的知识,几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角5、CD【解析】【分析】利用幂的运算法则可判断 利用平方差公式的特点可判断 利用同底数幂的除法判断 利用合并同类项可判断 从而可得答案.【详解】解:,故不符合题意;故不符合题意;故符合题意;故符合题意;故选:【考点】本题考查的是幂的运算,负整数指数幂的含义,平方差公式的应用,合并同类项,掌握以上运算的运算法则是解题的关键.三、填空题1、9.【解析】【分析】根据等腰三角形的性质及全等三角形的判定与性质即可求解.【详解】因为ABC是等腰三角形,所以有AB=AC,BAD=CAE,ABD=AC
11、E,所以ABDACE(ASA),所以BD=EC,EC=9.【考点】此题主要考查等腰三角形的性质,解题的关键是熟知全等三角形的判定与性质.2、1或-2【解析】【分析】根据除0外的数的任何次幂都是1及1的任何次幂都是1,所以当,和时解得或即可得解此题【详解】解:,可分以下三种情况讨论:时,且为偶数时,时, 时,1为奇数,的情况不存在,当时,的情况存在, 线 封 密 内 号学级年名姓 线 封 密 外 综上所述,符合条件的a的值为:1,-2,故答案为:1或-2【考点】本题考查了乘方性质的应用,解题的关键是了解乘方是1的数的所有可能情况3、1【解析】【分析】先根据题意得出方程,求出方程的解,再进行检验,
12、最后得出答案即可【详解】根据题意得:-=3,方程两边都乘以x-2得:-(3-x)-1=3(x-2),解得:x=1,检验:把x=1代入x-20,所以x=1是所列方程的解,所以当x=1时,的值比分式的值大3【考点】本题考查了解分式方程,能求出分式方程的解是解此题的关键4、【解析】【分析】分母不为零时,分式有意义.【详解】当2x10,即x时,分式有意义故答案为【考点】本题考点:分式有意义.5、(2,1)【解析】【分析】根据与x 轴对称的点的性质,求出对称点的坐标即可【详解】对称点与点 P( - 2,1)关于 x 轴对称保持横坐标不变,纵坐标取相反数对称点的坐标为故答案为:【考点】本题考查了关于x 轴
13、的对称点的坐标问题,掌握与x 轴对称的点的性质是解题的关键四、解答题1、见解析.【解析】【分析】根据三角形内角和定理结合已知条件求出AC180即可得出结论. 线 封 密 内 号学级年名姓 线 封 密 外 【详解】解:,C180(CEDD)180A,AC180,ABCD.【考点】本题考查了三角形内角和定理以及平行线的判定,比较基础,熟练掌握相关性质定理即可解题.2、(1)27;(2)【解析】【分析】(1)首先计算乘方、除法和负指数幂,然后进行加减计算即可;(2)按照幂的运算法则计算,再合并同类项【详解】解:(1)=27;(2)=【考点】本题主要考查了有理数的混合运算,整式的混合运算,熟练掌握实数
14、以内的各种运算法则,是解题的关键3、,16【解析】【分析】根据多项式乘法的计算法则和平方差公式化简原式后再把x的值代入计算即可【详解】解:原式当时,原式=【考点】本题考查整式的化简求值,根据多项式乘法的计算法则和平方差公式对原式进行化简是解题关键4、(1)a 4;(2)x22xyy2【解析】【分析】(1)先算同底数幂的乘法和除法,再合并同类项;(2)先根据单项式与多项式的乘法法则,完全平方公式计算,再去括号合并同类项;【详解】(1)解:a 6a 22a 3aa 42a 4a 4;(2)2x(x2y )(xy)2 线 封 密 内 号学级年名姓 线 封 密 外 2x24xy(x22xyy2)2x24xyx22xyy2x22xyy2【考点】本题考查了整式的混合运算,熟练掌握运算顺序及乘法公式是解答本题的关键5、2a26a3,16【解析】【分析】原式利用平方差公式,以及单项式乘以多项式法则计算,合并得到最简结果,把a的值代入计算即可求出值【详解】解:原式a23+a26a2a26a3,当a时,原式46316【考点】本题主要考查整式化简求值,准确计算是解题的关键