1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版九年级数学上册期中综合测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、若m、n是一元二次方程x23x90的两个根,则的值是()A4B5C6D122、
2、如图,矩形ABCD中,AD=2,AB=,对角线AC上有一点G(异于A,C),连接 DG,将AGD绕点A 逆时针旋转60得到AEF,则BF的长为()AB2CD23、若关于x的一元二次方程x2ax0的一个解是1,则a的值为()A1B2C1D24、关于x的一元二次方程根的情况,下列说法正确的是()A有两个不相等的实数根B有两个相等的实数根C无实数根D无法确定5、如图,在方格纸上建立的平面直角坐标系中,将绕点按顺时针方向旋转90,得到,则点的坐标为()ABCD二、多选题(5小题,每小题4分,共计20分)1、在图形旋转中,下列说法正确的是()A在图形上的每一点到旋转中心的距离相等B图形上每一点转动的角度
3、相同C图形上可能存在不动的点D图形上任意两点的连线与其对应两点的连线长度相等2、如图是二次函数图象的一部分,过点,对称轴为直线则错误的有()ABCD3、在图所示的4个图案中不包含图形的旋转的是() 线 封 密 内 号学级年名姓 线 封 密 外 ABCD4、二次函数y=ax2+bx+c(a0)的部分图象如图所示,图象过点(1,0),对称轴为直线x=2,下列结论中正确的有()A4a+b=0B9a+c3bC7a3b+2c0D若点A(3,y1)、点B(,y2)、点C(7,y3)在该函数图象上,则y1y3y2E若方程a(x+1)(x5)=3的两根为x1和x2,且x1x2,则x115x25、下面的图形中,
4、绕着一个点旋转120后,能与原来的位置重合的是()ABCD第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、在平面直角坐标系中,已知抛物线ymx22mxm2(m0)(1)抛物线的顶点坐标为_;(2)点M(x1,y1)、N(x2,y2)(x1x23)是拋物线上的两点,若y1y2,x2x12,则y2的取值范围为_(用含 m的式子表示)2、把抛物线向左平移1个单位长度,再向下平移3个单位长度,得到的抛物线的解析式为_3、抛物线是二次函数,则m=_4、你知道吗,对于一元二次方程,我国古代数学家还研究过其几何解法呢!以方程即为例加以说明数学家赵爽(公元34世纪)在其所著的勾股圆方图
5、注中记载的方法是:构造图(如下面左图)中大正方形的面积是,其中它又等于四个矩形的面积加上中间小正方形的面积,即,据此易得那么在下面右边三个构图(矩形的顶点均落在边长为1的小正方形网格格点上)中,能够说明方程的正确构图是_(只填序号)5、九章算术是我国古代的数学名著,其中“勾股”章有一题,大意是说:已知矩形门的高比宽多尺,门的对角线长尺,那么门的高和宽各是多少?如果设门的宽为尺,根据题意,那么可列方程_四、解答题(5小题,每小题8分,共计40分)1、判断2、5、-4是不是一元二次方程的根2、已知,是一元二次方程的两个实数根(1)求k的取值范围;(2)是否存在实数k,使得等式成立?如果存在,请求出
6、k的值,如果不存在,请说明理由3、解方程:(1)2x25x30; 线 封 密 内 号学级年名姓 线 封 密 外 (2)x22x2x1;(3)x23x204、陕西某景区吸引了大量中外游客前来参观,如果游客过多,对进景区的游客健康检查、拥堵等问题会产生不利影响,但也要保证一定的门票收入,因此景区采取了涨浮门票价格的方法来控制旅游人数,在该方法实施过程中发现:每周旅游人数与票价之间存在着如图所示的一次函数关系在这种情况下,如果要保证每周3 000万元的门票收入,那么每周应限定旅游人数是多少万人?门票价格应是多少元?5、在平面直角坐标系中,设二次函数(m是实数)(1)当时,若点在该函数图象上,求n的值
7、(2)小明说二次函数图象的顶点在直线上,你认为他的说法对吗?为什么?(3)已知点,都在该二次函数图象上,求证:-参考答案-一、单选题1、C【解析】【分析】由于m、n是一元二次方程x23x90的两个根,根据根与系数的关系可得mn=3,mn=9,而m是方程的一个根,可得m23m9=0,即m23m=9,那么m24mn=m23mmn,再把m23m、mn的值整体代入计算即可【详解】解:m、n是一元二次方程x23x90的两个根,mn3,mn9,m是x23x90的一个根,m23m90,m23m9,m24mnm23mmn9(mn)936故选:C【考点】本题考查了根与系数的关系,解题的关键是熟练掌握一元二次方程
8、ax2bxc0(a0)两根x1、x2之间的关系:x1x2=,x1x2=2、A【解析】【分析】过点F作FHBA交BA的延长线于点H,则FHA=90,AGD绕点A 逆时针旋转60得到AEF,得FAD=60,AF=AD=2,又由四边形ABCD是矩形,BAD=90,得到FAH=30,在RtAFH中,FH=AF=1,由勾股定理得AH= ,得到BH=AH+AB=2 ,再由勾股定理得BF= 线 封 密 内 号学级年名姓 线 封 密 外 【详解】解:如图,过点F作FHBA交BA的延长线于点H,则FHA=90,AGD绕点A 逆时针旋转60得到AEFFAD=60,AF=AD=2, 四边形ABCD是矩形 BAD=9
9、0BAF=FAD+ BAD=150FAH=180BAF=30在RtAFH中,FH=AF=1由勾股定理得AH= 在RtBFH中,FH=1,BH=AH+AB=2 由勾股定理得BF= 故BF的长故选:A【考点】本题考查了图形的旋转,矩形的性质,含30度角的直角三角形的性质,勾股定理等知识,解决此题的关键在于作出正确的辅助线3、C【解析】【分析】把x1代入方程x2ax0得1+a0,然后解关于a的方程即可【详解】解:把x1代入方程x2ax0得1+a0,解得a1故选C【考点】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解4、A【解析】【分析】先计算判别式,再进行配方
10、得到=(k-1)2+4,然后根据非负数的性质得到0,再利用判别式的意义即可得到方程总有两个不相等的实数根【详解】=(k-3)2-4(1-k)=k2-6k+9-4+4k=k2-2k+5=(k-1)2+4,(k-1)2+40,即0,方程总有两个不相等的实数根 线 封 密 内 号学级年名姓 线 封 密 外 故选:A【考点】本题考查的是根的判别式,一元二次方程ax2+bx+c=0(a0)的根与=b2-4ac有如下关系:当0时,方程有两个不相等的实数根;当=0时,方程有两个相等的实数根;当0时,方程无实数根上面的结论反过来也成立5、A【解析】【分析】根据网格结构作出旋转后的图形,然后根据平面直角坐标系写
11、出点B的坐标即可【详解】ABO如图所示,点B(2,1)故选A【考点】本题考查了坐标与图形变化,熟练掌握网格结构,作出图形是解题的关键二、多选题1、BCD【解析】【分析】根据旋转的性质分别对每一个选项进行判断即可【详解】解:A、由旋转的性质可得,图形上对应点到旋转中心的距离相等,故此选项不符合题意;B、 由旋转的性质可得,图形上的每一点转动的角度相同,故此选项符合题意;C、由旋转的性质可得,图形上可能存在不动点(例如此点为旋转中心),故此选项符合题意;D、 由旋转的性质可得,图形上对应两点的连线与其对应两点的连线相等,故此选项符合题意;故选BCD【点睛】本题主要考查了旋转的性质:旋转前后的两个图
12、形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等2、BD【解析】【分析】由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴x=1可得2a+b的符号;再由根的判别式可得,根据二次函数的对称性进而对所得结论进行判断【详解】解:A、由抛物线的开口向下知a0,对称轴为直线,得2a=b,a、b同号,即b0;故本选项正确,不符合题意;B、对称轴为,得2a=b,2a+b=4a,且a0, 线 封 密 内 号学级年名姓 线 封 密 外 2a+b0;故本选项错误,符合题意;C、从图象知,该函数与x轴有两个不同的交点,所以根的判别式,即;故本选项正确,不符合
13、题意;D、3x12,根据二次函数图象的对称性,知当x=1时,y0;又由A知,2a=b,a+b+c0;b+b+c0,即3b+2c0;故本选项错误,符合题意故选:BD【点睛】本题主要考查了二次函数图象与系数之间的关系,熟练运用对称轴的范围求2a与b的关系,二次函数与方程及不等式之间的关系是解决本题的关键3、AC【解析】【分析】根据中心对称与轴对称的概念,即可求解【详解】解:A、是轴对称图形,故本选项符合题意;B、是中心对称图形,属于图形的旋转,故本选项不符合题意;C、是轴对称图形,故本选项符合题意;D、既是轴对称图形,也是中心对称图形,包含图形的旋转,故本选项不符合题意;故选:AC【点睛】本题主要
14、考查了中心对称与轴对称的概念,熟练掌握轴对称图形的关键是寻找对称轴,图象沿对称轴折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180后与原图重合是解题的关键4、ABE【解析】【分析】根据抛物线的对称轴为直线x2,则有4a+b0,可得A正确;根据二次函数的对称性得到当x3时,函数值大于0,则9a+3b+c0,即9a+c3 b,可得B正确;由于x1时,y0,则ab+c0,易得c5a,所以7a-3b+2c9 a,再根据抛物线开口向下得a0,于是有7a3b+2c0,可得C错误;利用抛物线的对称性得到(3,)在抛物线上,然后利用二次函数的增减性可得D错误;作出直线 y3,然后依据函数图象进行判断可
15、得E正确;综上即可得答案【详解】A项:x 2,4a+b0,故A正确B项:抛物线与x轴的一个交点为(-1,0),对称轴为直线x=2,另一个交点为(5,0),抛物线开口向下,当x3时,y0,即9a+3b+c0,9a+c3b,故B正确C项:抛物线与x轴的一个交点为(1,0), 线 封 密 内 号学级年名姓 线 封 密 外 ab+c0b4a,a+4a+c0,即c5a,7a3b+2c7a+12a10a9a,抛物线开口向下,a0,7a3b+2c0,故C错误;D项:抛物线的对称轴为x2,C(7,)在抛物线上,点(3,)与C(7,)关于对称轴x2对称,A(3,)在抛物线上,=,3 12 ,在对称轴的左侧,抛物
16、线开口向下,y随x的增大而增大, ,故D错误E项:方程a(x+1)(x5)0的两根为x1或x5,过y3作x轴的平行线,直线y3与抛物线的交点的横坐标为方程的两根,抛物线与x轴交点为(-1,0),(5,0),依据函数图象可知:15,故E正确故答案为:ABE【点睛】本题考查了二次函数图象与系数的关系:二次函数y=ax+bx+c(a0),二次项系数a决定抛物线的开口方向和大小,当a0时,抛物线向上开口;当a0时,抛物线向下开口;一次项系数b和二次项系数 a共同决定对称轴的位置,当a与b同号时(即ab0),对称轴在y轴左;当a与b异号时(即ab0),对称轴在y轴右;常数项c决定抛物线与 y轴交点抛物线
17、与y轴交于(0,c);抛物线与x轴交点个数由决定,=b4ac0时,抛物线与x轴有2个交点;=b4ac=0时,抛物线与x轴有1个交点;= b4 ac0时,抛物线与x轴没有交点5、AB【解析】【分析】根据旋转的性质对题中图形进行分析即可【详解】解:A、旋转任意角度都与原图形重合,故符合题意;B、旋转最小的度数是120度与原图形重合,故符合题意;C、旋转最小的度数是72度(72度的整倍数都可以)与原图形重合,则旋转120度不能与原图形重合,故不符合题意;D、旋转最小的度数是90度(90度的整倍数都可以)与原图形重合,则旋转120度不能与原图形重合,故不符合题意故选AB【点睛】本题主要考查了图形的旋转
18、,理解旋转的定义是解题的关键 线 封 密 内 号学级年名姓 线 封 密 外 三、填空题1、 (1,-2) 【解析】【分析】(1)将二次函数解析式化为顶点式求解;(2)抛物线的对称轴为直线x=1,得到当点M,N关于抛物线的对称轴对称时,x1+x2=2,结合x2-x1=2,可得x1=0,x2 =2,得到当2x23时,y1y2,再将x=2、x=3代入函数关系式进行求解即可 【详解】(1),抛物线顶点坐标为(1,-2),故答案为 (1,-2)(2)抛物线的对称轴为直线x=1,当点M,N关于抛物线的对称轴对称时,x1+x2=2,结合x2-x1=2,可得x1=0,x2 =2,当2x23时,y1y2,对于y
19、=m(x-1)2-2,当x =2时,y=m-2;当x=3时,y=4m-2,【考点】本题考查二次函数图象上的点的特征,解题关键是掌握二次函数与方程及不等式的关系2、【解析】【分析】直接根据“上加下减,左加右减”进行计算即可【详解】解:抛物线向左平移1个单位长度,再向下平移3个单位长度,得到的抛物线的解析式为:,即:故答案为:【考点】本题主要考查函数图像的平移,熟记函数图像的平移方式“上加下减,左加右减”是解题的关键3、3【解析】【分析】根据二次函数的定义:一般地,形如(a、b、c是常数且a0)的函数叫做二次函数,进行求解即可【详解】解:抛物线是二次函数,故答案为:3【考点】 线 封 密 内 号学
20、级年名姓 线 封 密 外 本题主要考查了二次函数的定义,解题的关键在于能够熟知二次函数的定义4、【解析】【分析】仿造案例,构造面积是的大正方形,由它的面积为,可求出,此题得解【详解】解:即,构造如图中大正方形的面积是,其中它又等于四个矩形的面积加上中间小正方形的面积,即,据此易得故答案为【考点】本题考查了一元二次方程的应用,仿造案例,构造出合适的大正方形是解题的关键5、或【解析】【分析】设门的宽为x尺,则门的高为(x+6)尺,利用勾股定理,即可得出关于x的一元二次方程,此题得解【详解】解:设门的宽为x尺,则门的高为(x+6)尺,依题意得:即或故答案为:或【考点】本题考查了由实际问题抽象出一元二
21、次方程以及勾股定理的应用,找准等量关系,正确列出一元二次方程是解题的关键四、解答题1、2,-4是一元二次方程的根,5不是一元二次方程的根.【解析】【分析】分别将2、5、-4代入方程进行验证即可.【详解】解:将x=2代入可得:6=6,故x=2是该一元二次方程的根,将x=5代入可得:303,故x=5不是该一元二次方程的根,将x=-4代入可得:12=12,故x=-4是该一元二次方程的根.【点睛】本题考查一元二次方程解的意义,方程的解即为能使方程左右两边相等的未知数的值.2、(1);(2)【解析】【分析】(1)根据方程的系数结合0,即可得出关于k的一元一次不等式,解之即可得出k的取值范围;(2)根据根
22、与系数的关系可得出x1x22,x1x2k2,结合,即可得出关于k的方程,解之即可得出k值,再结合(1)即可得出结论 线 封 密 内 号学级年名姓 线 封 密 外 【详解】解:(1)一元二次方程有两个实数根,解得;(2)由一元二次方程根与系数关系,即,解得又由(1)知:,【点睛】本题考查了根与系数的关系以及根的判别式,解题的关键是:(1)牢记“当0时,方程有两个实数根”;(2)根据根与系数的关系结合,找出关于k的方程3、 (1)x1,x23(2)x12,x22(3)x11,x22【解析】【分析】(1)直接用公式法求解;(2)用配方法求解;(3)用因式分解法求解(1)解:a2,b5,c3,b24a
23、c(5)242(3)490,x,x1,x23;(2)解:移项,得x24x1,配方,得x24x414,即(x2)23,两边开平方,得x2,即x2或x2,x12,x22;(3)解:原方程可变形为(x1)(x2)0,x10或x20,x11,x22【点睛】本题考查一元二次方程解法,根据方程的特征,选择适当方法求解是解题的关键4、10万人、300元【解析】【分析】 线 封 密 内 号学级年名姓 线 封 密 外 设门票价格为x元,每周旅游人数为y万人,根据题中的图中信息,利用待定系数法即可求解出每周旅游人数y与票价x之间存在一次函数关系,再根据题意列出一元二次方程即可求解【详解】解:设门票价格为x元,每周
24、旅游人数为y万人,每周旅游人数与票价之间存在一次函数关系,设一次函数为ykxb,则有,解得:,由题意得:,解得100,300当x100时,y30;当x300时,y10既要控制人数又要保证收入,每周应限定旅游人数是10万人,门票价格应是300元【点睛】本题主要考查一次函数与一元二次方程的实际应用,根据等量关系,列出一次函数解析式和方程,是解题的关键5、 (1)-7(2)对,理由见解析(3)见解析【解析】【分析】(1)把m=2,点A(8,n)代入解析式即可求解;(2)由抛物线解析式,得顶点是,把x2m代入,求出y值与3-m比较,若相等则即可判断小明说法正确,否则说法错误;(3)由点P(a+1,c)
25、,Q(4m-5+a,c)的纵坐标相同,即可求得对称轴为直线x=a+2m-2,即可得出a+2m-2=2m,求得a=2,得到P(3,c),代入解析式即可得到 ,根据二次函数的性质即可证得结论(1)解:当m2时,A(8,n)在函数图象上,(2)解:由题意得,顶点是当x2m时,顶点在直线上(3)证明:P(a+1,c),Q(4m-5+a,c)都在二次函数的图象上对称轴是直线 线 封 密 内 号学级年名姓 线 封 密 外 a+2m-22m ,a2,P(3,c),把P(3,c)代入抛物线解析式,得,-20,c有最大值为,c【点睛】本题考查了二次函数图象与系数的关系,二次函数图象上点的坐标特征,二次函数的性质,熟练掌握二次函数的性质是解题的关键