1、京改版八年级数学上册期末模拟试题 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、5个红球、4个白球放入一个不透明的盒子里,从中摸出6个球,恰好红球与白球都摸到,这个事件()A不可能发生B可能发生C很
2、可能发生D必然发生2、计算的结果是()ABC1D3、若,则的值为()ABCD4、如图,在ABC中,ABC90,AB3,BC1,AB在数轴上,以点A为圆心,AC长为半径作弧,交数轴的正半轴于点M,则M表示的数为()A2.1B1CD15、一条船从海岛A出发,以15海里/时的速度向正北航行,2小时后到达海岛B处灯塔C在海岛在海岛A的北偏西42方向上,在海岛B的北偏西84方向上则海岛B到灯塔C的距离是()A15海里B20海里C30海里D60海里二、多选题(5小题,每小题4分,共计20分)1、如图,是的角平分线,分别是和的高,连接交于点G下列结论正确的为()A垂直平分B平分C平分D当为时,是等边三角形2
3、、将一个等腰直角三角形按图示方式依次翻折,若DE1,则下列说法正确的有()ADF平分BDEBBC长为CB FD是等腰三角形DCED的周长等于BC的长3、如图,为估计池塘岸边A,B两点间的距离,小方在池塘的一侧选取一点O,测得米,米,A,B间的距离可能是()A12米B10米C15米D8米4、如图,在四边形ABCD中,边AB与AD关于AC对称,则下面结论正确的是()ACA平分BCD;BAC平分BAD;CDBAC;DBE=DE5、下列说法中不正确的是()A全等三角形是指形状相同的三角形B全等三角形的周长和面积分别相等C所有的等边三角形是全等三角形D有两个角对应相等的两个三角形全等第卷(非选择题 65
4、分)三、填空题(5小题,每小题5分,共计25分)1、若一个数的立方根等于这个数的算术平方根,则这个数是_2、方程的解是_3、若分式有意义,则x的取值范围是 _4、分式的值比分式的值大3,则x为_5、比较大小:_四、解答题(5小题,每小题8分,共计40分)1、计算:(1)(2)2、如图,在ABC中,ACB=90,A=30,AB的垂直平分线分别交AB和AC于点D,E. (1)求证:AE=2CE;(2)连接CD,请判断BCD的形状,并说明理由.3、如图,在45的正方形网格中,每个小正方形的顶点称为格点,小正方形的边长均为1,点A、B均在格点上,以AB为边画等腰ABC,要求点C在格点上(1)在图、图中
5、画出两种不同形状的等腰三角形ABC(2)格点C的不同位置有 处4、如图,在 ABC 中,AB=AC=2,B=40,点 D 在线段BC 上运动(D 不与 B,C 重合),连接 AD,作 ADE=40,DE 与 AC 交于E (1)当 BDA=115时,BAD= ,DEC= ;当点D 从B 向C 运动时,BDA 逐渐变 (填“大”或“小”);(2)当DC 等于多少时,ABD 与 DCE 全等?请说明理由;(3)在点D 的运动过程中,ADE 的形状可以是等腰三角形吗?若可以,请直接写出 BDA 的度数;若不可以,请说明理由5、已知a2,b2,求下列式子的值:(1)a23abb2;(2)(a1)(b1
6、)-参考答案-一、单选题1、D【解析】【分析】根据事件的可能性判断相应类型即可【详解】5个红球、4个白球放入一个不透明的盒子里,由于红球和白球的个数都小于6,从中摸出6个球,恰好红球与白球都摸到,是必然事件.故选:D.【考点】本题考查的是可能性大小的判断,解决这类题目要注意具体情况具体对待一般地必然事件的可能性大小为1,不可能事件发生的可能性大小为0,随机事件发生的可能性大小在0至1之间2、C【解析】【分析】根据同分母分式的加法法则,即可求解【详解】解:原式=,故选C【考点】本题主要考查同分母分式的加法法则,掌握”同分母分式相加,分母不变,分子相加“是解题的关键3、C【解析】【分析】先计算,的
7、算术平方根,并进行化简即可【详解】解:, 故选C【考点】本题考查了算术平方根和数字的变化类规律问题,分别计算出,的算术平方根是解本题的关键4、B【解析】【分析】先根据勾股定理求出AB的长,进而可而出结论【详解】ABC中,B=90,AB=3,BC=1,AC=A点表示1,M点表示1故选:B【考点】本题考查勾股定理及实数与数轴,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键5、C【解析】【分析】根据题意画出图形,根据三角形外角性质求出C=CAB=42,根据等角对等边得出BC=AB,求出AB即可【详解】解:根据题意得:CBD=84,CAB=42,C=CBD-CA
8、B=42=CAB,BC=AB,AB=15海里/时2时=30海里,BC=30海里,即海岛B到灯塔C的距离是30海里故选C.【考点】本题考查了等腰三角形的性质和判定和三角形的外角性质,关键是求出C=CAB,题目比较典型,难度不大二、多选题1、ACD【解析】【分析】根据角平分线性质求出DEDF,证RtAEDRtAFD,推出AEAF,再逐个判断即可【详解】解:AD是ABC的角平分线,DE,DF分别是ABD和ACD的高,DEDF,AEDAFD90,在RtAED和RtAFD中,RtAEDRtAFD(HL),AEAF,ADEADF,AD平分EDF;C正确;AD平分BAC,AEAF,DEDF,AD垂直平分EF
9、,A正确;B错误,BAC60,AEAF,AEF是等边三角形,D正确故选:ACD【考点】本题考查了全等三角形的性质和判定,正方形的判定,角平分线性质的应用,能求出RtAEDRtAFD是解此题的关键2、BCD【解析】【分析】由和等腰直角三角形,可推出,进一步由角度关系得到,结合,可得到,即可判断出A、C是否正确;通过分析可以得到,从而在中,得到长度,进一步求得的周长和BC的长度,即可判断B、D是否正确【详解】解:是等腰直角三角形,且 折叠 ,折叠 , 不是的角平分线,选项A错误 是等腰三角形,选项C正确 又 的周长等于的长,所以选项B、D正确故选:BCD【考点】本题考查等腰三角形的性质,直角三角形
10、互余,三角形外角性质以及三角形全等性质等知识点,根据知识点解题是关键3、ABD【解析】【分析】根据三角形的三边之间的关系逐一判断即可得到答案.【详解】解:中, 符合题意,不符合题意;故选:【考点】本题考查的是三角形的三边关系的应用,掌握三角形的任意两边之和大于第三边,任意两边之差小于第三边是解题的关键.4、ABCD【解析】【分析】根据轴对称的性质得出BAC=DAC,ACBD,BE=DE,根据线段垂直平分线性质得出BC=DC,根据等腰三角形性质得出BCA=DCA即可【详解】解:在四边形ABCD中,边AB与AD关于AC对称,BAC=DAC,即AC平分BAD ,ACBD,BE=DE,BC=DC,BC
11、A=DCA,即CA平分BCD;ABCD都正确;故选:ABCD【考点】本题考查了轴对称的性质,线段垂直平分线性质,等腰三角形的性质的应用,主要考查学生推理能力,注意:如果两个图形关于某一直线对称,那么这两个图形是全等形,对称轴是对应点连线的垂直平分线5、ACD【解析】【分析】根据等边三角形的性质,全等三角形的判定和性质,三角形面积公式逐个判断即可【详解】A、全等三角形是指形状相同,且相似比为1的两个三角形,故本选项符合题意;B、两个三角形全等,这两个三角形的面积相等,对应边相等,即这两个三角形的周长也相等,故本选项不符合题意;C、如图的两个等边三角形不是全等三角形,故本选项符合题意;D、有两个角
12、和其中一角的对边对应相等的两个三角形,利用AAS即可证明三角形全等,故本选项符合题意故选:ACD【考点】本题考查了全等三角形的判定和性质,等边三角形的性质等知识点,能灵活运用性质进行说理是解此题的关键三、填空题1、0或1【解析】【分析】设这个数为a,由立方根等于这个数的算术平方根可以列出方程,解方程即可求出a【详解】解:设这个数为a,由题意知,=(a0),解得:a=1或0,故答案为:1或0【考点】本题主要考查算术平方根和立方根等知识点,基础题需要重点掌握,同学们很容易忽略a02、-3【解析】【分析】根据解分式方程的步骤去分母,解方程,检验解答即可【详解】解:方程的两边同乘,得:,解这个方程,得
13、:,经检验,是原方程的解,原方程的解是故答案为-3【考点】本题考查分式方程的解法,掌握分式方程的解题步骤是关键3、【解析】【分析】根据分式有意义的条件,即可求解【详解】解:根据题意得: ,解得: 故答案为:【考点】本题主要考查了分式有意义的条件,熟练掌握当分式的分母不等于0时分式有意义是解题的关键4、1【解析】【分析】先根据题意得出方程,求出方程的解,再进行检验,最后得出答案即可【详解】根据题意得:-=3,方程两边都乘以x-2得:-(3-x)-1=3(x-2),解得:x=1,检验:把x=1代入x-20,所以x=1是所列方程的解,所以当x=1时,的值比分式的值大3【考点】本题考查了解分式方程,能
14、求出分式方程的解是解此题的关键5、【解析】【分析】先估算的大小,然后再比较无理数的大小即可【详解】解:,;故答案为:【考点】本题考查了实数的比较大小,无理数的估算,解题关键是正确掌握实数比较大小的法则四、解答题1、 (1)(2)【解析】【分析】(1)根据绝对值的性质、立方根的定义进行计算;(2)根据算术平方根的性质、绝对值的性质、立方根的定义以及乘方得到结果(1)解:原式 ;(2)解:原式 【考点】本题考查了实数的综合运算能力,解决此题的关键是熟练掌握绝对值、算术平方根和立方根的运算2、见解析【解析】【分析】(1)连接BE,根据线段垂直平分线的性质可得AE=BE,利用等边对等角的性质可得ABE
15、=A;结合三角形外角的性质可得BEC的度数,再在RtBCE中结合含30角的直角三角形的性质,即可证明第(1)问的结论;(2)根据直角三角形斜边中线的性质可得BD=CD,再利用直角三角形锐角互余的性质可得到ABC=60,至此不难判断BCD的形状【详解】(1)证明:连结BE,如图DE是AB的垂直平分线,AEBE,ABEA30,CBEABCABE30,在RtBCE中,BE2CE,AE2CE.(2)解:BCD是等边三角形理由如下:DE垂直平分AB,D为AB的中点ACB90,CDBD.又ABC60,BCD是等边三角形【考点】此题考查了线段垂直平分线的性质、30角的直角三角形的性质,等腰三角形的性质,直角
16、三角形斜边的中线等于斜边的一半,等边三角形的判定,熟练掌握30角的直角三角形的性质是解(1)的关键,熟练掌握直角三角形斜边的中线等于斜边的一半是解(2)的关键,3、(1)见解析;(2)3【解析】【分析】(1)根据等腰三角形的定义,利用勾股定理、数形结合的思想解决问题即可(2)根据画出的图形判断即可【详解】解:(1)所求作的ABC如图所示;(2)在图中再作出符合条件的点C,所以格点C的位置有3处,故答案为3【考点】本题考查了格点中画等腰三角形、等腰三角形的定义、勾股定理,能根据等腰三角形的定义,利用勾股定理、数形结合的思想解决问题是解答的关键4、(1)25,115,小;(2)2,理由见解析;(3
17、)能,110或80【解析】【分析】(1)首先利用三角形内角和为180可算出BAD=180-40-115=25;再利用邻补角的性质和三角形内角和定理可得DEC的度数;(2)当DC=2时,利用DEC+EDC=140,ADB+EDC=140,求出ADB=DEC,再利用AB=DC=2,即可得出ABDDCE(3)当BDA的度数为110或80时,ADE的形状是等腰三角形【详解】解:(1)B=40,ADB=115,BAD=180-40-115=25;ADE=40,ADB=115,EDC=180-ADB-ADE=180-115-40=25DEC=180-40-25=115,当点D从B向C运动时,BDA逐渐变小
18、;故答案为:25,115,小;(2)当DC=2时,ABDDCE,理由:C=40,DEC+EDC=140,又ADE=40,ADB+EDC=140,ADB=DEC,又AB=DC=2,在ABD和DCE中,ABDDCE(AAS);(3)当BDA的度数为110或80时,ADE的形状是等腰三角形,BDA=110时,ADC=70,C=40,DAC=70,ADE的形状是等腰三角形;当BDA的度数为80时,ADC=100,C=40,DAC=40,ADE的形状是等腰三角形当BDA的度数为110或80时,ADE的形状是等腰三角形【考点】本题主要考查了等腰三角形的判定与性质,全等三角形的判定与性质,三角形外角的性质,关键是要考虑全面,分情况讨论ADE的形状是等腰三角形5、(1)26;(2)3【解析】【分析】(1)根据完全平方公式的形式对a23abb2变形为,然后代入求值即可;(2)化简(a1)(b1)得,然后代入求值即可【详解】解:(1)a23abb2=,a2,b2,代入得,原式= ;(2)(a1)(b1)=,a2,b2,代入得,原式= 【考点】此题考查了二次根式代数求值,解题的关键是先根据整式的乘法运算法则化简原式