1、京改版八年级数学上册期中综合测评试题 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、设,且x、y、z为有理数则xyz()ABCD2、下列算式正确的是()ABCD3、下列说法中:不带根号的数都是有理数
2、;-8没有立方根;平方根等于本身的数是1;有意义的条件是a为正数;其中正确的有 () A0个B1个C2个D3个4、按如图所示的运算程序,能使输出y值为1的是()ABCD5、若a、b为实数,且,则直线yaxb不经过的象限是()A第一象限B第二象限C第三象限D第四象限二、多选题(5小题,每小题4分,共计20分)1、下列说法错误的是()A1的平方根是1B1的立方根是1C是3的平方根D3是的平方根2、算术平方根等于它本身的数是()A1B0C-1D13、下列说法中不正确的有()A有理数和数轴上的点一一对应B不带根号的数一定是有理数C负数没有立方根D是17的平方根4、下列说法错误的是()A无限小数是无理数
3、B无限不循环小数是无理数C3是一个无理数D圆周率是无理数5、(多选)下列语句及写成式子不正确的是()A9是81的算术平方根,即B的平方根是C1的立方根是D与数轴上的点一一对应的是实数第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、计算610的结果是_2、如果=4,那么(a-67)3的值是_3、计算:=_4、 “绿水青山就是金山银山”某地为美化环境,计划种植树木2000棵由于志愿者的加入,实际每天植树的棵树比原计划增加了25%,结果提前4天完成任务则实际每天植树_棵5、某校学生捐款支援地震灾区,第一次捐款的总额为6600元,第二次捐款的总额为7260元,第二次捐款的总人数
4、比第一次多30人,而且两次人均捐款额恰好相等,则第一次捐款的总人数为_人四、解答题(5小题,每小题8分,共计40分)1、解答下列各题:(1)解方程:(2)解不等式组:,并把解集表示在数轴上2、把下列各式填入相应的括号内:2a,整式集合:;分式集合:3、计算:(1);(2)4、计算(1);(2);(3)5、计算:-参考答案-一、单选题1、A【解析】【分析】将已知式子两侧平方后,根据x、y、z的对称性,列出对应等式,进而求出x、y、z的值即可求解【详解】解:两侧同时平方,得到,,xyz,故选择:A【考点】本题考查二次根式的加减法,x、y、z对称性,掌握二次根式加减法法则,利用两边平方比较无理数构造
5、方程是解题关键2、D【解析】【分析】根据算术平方根的非负性,立方根的定义即可判断【详解】A、,故 A错误;B、,故B错误;C、,故C错误;D、,故D正确【考点】本题考查了算术平方根和立方根,掌握相关知识是解题的关键3、A【解析】【分析】根据是二次根式有意义的条件、平方根的概念和立方根的概念判断即可【详解】解:不带根号的数不一定都是有理数,例如,错误;-8的立方根是-2,错误;平方根等于本身的数是0,错误;有意义的条件是a为非负数,错误,故选A【考点】本题考查的是二次根式有意义的条件、平方根的概念和立方根的概念,掌握二次根式中的被开方数是非负数是解题的关键4、D【解析】【分析】逐项代入,寻找正确
6、答案即可.【详解】解:A选项满足mn,则y=2m+1=3; B选项不满足mn,则y=2n-1=-1; C选项满足mn,则y=2m+1=3; D选项不满足mn,则y=2n-1=1; 故答案为D;【考点】本题考查了根据条件代数式求值问题,解答的关键在于根据条件正确地代入代数式及代入的值.5、D【解析】【分析】依据即可得到 进而得到直线不经过的象限是第四象限【详解】解: 解得, ,直线不经过的象限是第四象限故选D【考点】本题主要考查了一次函数的性质,解决问题的关键是掌握二次根式中被开方数的取值范围:二次根式中的被开方数是非负数二、多选题1、AD【解析】【分析】根据平方根和立方根的定义即可求解【详解】
7、解:A、1的平方根是1和-1,故A错误,符合题意;B、1的立方根是1,故B正确,不符合题意;C、是3的平方根,故C正确,不符合题意;D、因为,所以的平方根是 ,故D错误,符合题意故选:AD【考点】本题主要考查了平方根和立方根的定义,熟练掌握平方根和立方根的定义是解题的关键2、AB【解析】【分析】根据算术平方根的求解,可得算术平方根等于本身的数只有0和1,即可求解【详解】解:根据算术平方根的性质,算术平方根等于本身的数只有0和1故选AB【考点】本题考查了算术平方根,掌握算术平方根的求解是解题的关键3、ABC【解析】【分析】根据实数与数轴,有理数与无理数的定义,平方根和立方根的定义进行逐一判断即可
8、【详解】解:A、有理数和数轴上的点不一一对应,数轴上的点也可以表示无理数,故该选项符合题意;B. 不带根号的数不一定是有理数,例如是无理数,故该选项符合题意;C. 负数有立方根,故该选项符合题意;D. 是17的平方根,故此选项不符合题意;故选ABC【考点】本题主要考查了实数与数轴,有理数与无理数的定义,平方根和立方根的定义,解题的关键在于能够熟练掌握相关知识进行求解4、AC【解析】【分析】根据无理数的定义:无限不循环的小数,进行求解即可.【详解】解:A、无限不循环小数是无理数,此选项错误;B、无限不循环小数是无理数,此选项正确;C、3是一个有理数,此选项错误;D、圆周率是无理数,此选项正确.故
9、选AC.【考点】本题主要考查了无理数的定义,解题的关键在于能够熟练掌握无理数的定义.5、ABC【解析】【分析】根据平方根,算术平方根、立方根以及数轴与实数的关系逐项进行判断即可【详解】解:A、9是81的算术平方根,即=9,因此选项A符合题意;B、a2的平方根为=a,因此选项B符合题意;C、1的立方根是1,因此选项C符合题意;D、实数与数轴上的点一一对应,因此选项D不符合题意;故答案为:ABC【考点】本题考查了平方根、算术平方根、立方根以及数轴与实数,理解平方根、算术平方根、立方根的意义是正确判断的前提三、填空题1、【解析】【分析】首先化简,然后再合并同类二次根式即可【详解】解:原式=6-10=
10、6-2=4,故答案为4【考点】此题主要考查了二次根式的加减,关键是掌握二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变2、343【解析】【分析】利用立方根的定义及已知等式求出a的值,代入所求式子计算即可求出值【详解】,a+4=43,即a+4=64,a=60,则(a-67)3=(60-67)3=(-7)3=-343,故答案为-343.【考点】本题考查了立方根,熟练掌握立方根的定义是解本题的关键3、2【解析】【分析】先把二次根式化为最简二次根式,然后把括号内合并后再进行二次根式的除法运算即可得出答案【详解】原式(42)22故答案为
11、2【考点】本题考查了二次根式的混合运算.把二次根式化为最简二次根式,再根据混合运算顺序进行计算是解题的关键4、125【解析】【分析】设原计划每天植树x棵,则实际每天植树(1+25%)x棵,根据工作时间=工作总量工作效率,结合实际比原计划提前4天完成任务,即可得出关于x的分式方程,解之经检验后即可得出x的值,再将其代入(1+25%)x中即可求出结论【详解】解:设原计划每天植树x棵,则实际每天植树(1+25%)x棵,依题意得:,解得:x=100,经检验,x=100是原方程的解,且符合题意,(1+25%)x=125故答案为:125【考点】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题
12、的关键5、300【解析】【分析】先设第一次的捐款人数是x人,根据两次人均捐款额恰好相等列出方程,求出x的值,再进行检验即可求出答案【详解】解:设第一次的捐款人数是x人,根据题意得:,解得:x300,经检验x300是原方程的解,故答案为300【考点】此题考查了分式方程的应用,解题的关键是读懂题意,找出之间的等量关系,列出方程,解分式方程时要注意检验四、解答题1、(1)方程无解;(2),数轴见解析【解析】【分析】(1)解分式方程,先去分母,然后去括号,移项,合并同类项,系数化1,注意结果要进行检验;(2)解一元一次不等式组,分别求出各不等式的解集,再在数轴上表示出来即可【详解】解:(1)去分母得:
13、,去括号得:,移项合并同类项得:,系数化为1得:,经检验时,则为原方程的增根,原分式方程无解 (2),由得,由得,不等式组的解集为:,在数轴上表示如图:【考点】本题考查解分式方程和解一元一次不等式组,掌握运算顺序和计算法则正确计算是解题关键2、整式集合: 2a,;分式集合: ,【解析】【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式【详解】2a,的分母没有字母是整式,式子的分母含有字母是分式故答案为:整式集合: 2a,;分式集合: ,【考点】本题考查了整式和分式的定义,熟练掌握相关概念是解题关键,注意:不是字母,是常数3、(1);(2)【解析】【分析
14、】(1)根据乘法分配律相乘,再化简二次根式即可;(2)先用完全平方公式进行计算,再合并即可【详解】解:(1)= =(2) =【考点】本题考查了二次根式的运算,解题关键是熟练运用二次根式运算法则和乘法公式进行准确计算4、(1);(2);(3)【解析】【分析】【详解】解析:分式的乘除混合运算,一般先统一为乘法运算,有括号的先算括号里面的答案:解:(1)原式;(2)原式;(3)原式易错:(1)原式错因:化简时没有看好字母的指数满分备考:乘除混合运算,遇到除法先化为乘法,有括号的先算括号里面的,每个分式的分子和分母能因式分解的就先因式分解,化简到最简分式再进行计算,最后结果要化为最简分式或整式的形式5、【解析】【分析】分别根据绝对值的代数意义、二次根式的乘法、分母有理化以及负整数指数幂的运算法则对各项进行化简,然后再进行加减运算即可【详解】解:=【考点】此题主要考查了二次根式的混合运算,熟练掌握运算法则是解答此题的关键