1、京改版八年级数学上册期中专项测评试题 A卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、民勤六中九年级的几名同学打算去游学,包租一辆面包车的租价为360元,出发时又增加了5名同学,结果每个同学比原来少分担
2、了6元钱的车费原有人数为x,则可列方程为()ABCD2、已知,当时,则的值是()ABCD3、若a、b为实数,且,则直线yaxb不经过的象限是()A第一象限B第二象限C第三象限D第四象限4、在下列各数中是无理数的有(),(相邻两个之间有个),A个B个C个D个5、要使有意义,则x的取值范围为()Ax100Bx2Cx2Dx2二、多选题(5小题,每小题4分,共计20分)1、定义运算:下面给出了关于这种运算的几种结论,其中正确的结论是()ABC若,则D若,则或2、下列说法中不正确的有()A有理数和数轴上的点一一对应B不带根号的数一定是有理数C负数没有立方根D是17的平方根3、下列说法不正确的是()A的立
3、方根是0.4B的平方根是C16的立方根是D0.01的立方根是0.0000014、下列实数中无理数有()AB0CDEFGH0.0200200025、下列运算中,不正确的是()AB(2)24C(3.14)00D第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、当_时,分式的值为0.2、数学家发明了一个魔术盒,当任意 “数对 ” 进入其中时,会得到一个新的数:,例如把放入其中,就会得到,现将 “数对”放入其中后,得到的数是_3、如图,已知数轴上的点A、B、C、D分别表示数、1、2、3,则表示数的点P应落在线段_上(从“”,“”,“”,“”中选择)4、化简:_5、若将三个数,表示
4、在数轴上,则被如图所示的墨迹覆盖的数是_.四、解答题(5小题,每小题8分,共计40分)1、计算:(1);(2)2、计算:(1)3-9+3;(2)()+();(3)+6-2x;(4)+(-1)0.3、计算: 4、计算(1);(2)5、先化简:,然后在的非负整数集中选取一个合适的数作为的值代入求值-参考答案-一、单选题1、A【解析】【分析】设原有人数为x人,根据增加之后的人数为(x+5)人,根据增加人数之后每个同学比原来少分担了6元车费,列方程【详解】解:设原有人数为x人,根据则增加之后的人数为(x+5)人,由题意得,即故选:A【考点】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,
5、设出未知数,找出合适的等量关系,列方程即可2、A【解析】【分析】根据已知,得a=5b,c=5d,将其代入即可求得结果【详解】解:a=5b,c=5d,故选:A【考点】本题考查的是求代数式的值,应先观察已知式,求值式的特征,采用适当的变形,作为解决问题的突破口3、D【解析】【分析】依据即可得到 进而得到直线不经过的象限是第四象限【详解】解: 解得, ,直线不经过的象限是第四象限故选D【考点】本题主要考查了一次函数的性质,解决问题的关键是掌握二次根式中被开方数的取值范围:二次根式中的被开方数是非负数4、B【解析】【分析】根据无理数是无限不循小数,可得答案【详解】解:,是无理数,故选:B【考点】本题考
6、查了无理数,无理数是无限不循环小数,有理数是有限小数或无限循环小数5、C【解析】【分析】根据二次根式有意义的条件可知,解不等式即可【详解】有意义,解得:故选C【考点】本题考查了二次根式有意义的条件,理解二次根式有意义的条件是解题的关键二、多选题1、ACD【解析】【分析】先根据的运算法则,分别对每一项进行计算得出正确结果,最后判断出所选的结论【详解】A、,故本选项正确;B、,不一定相等,故本选项错误;C、若,则;故本选项正确;D、若,则或,故本选项正确;正确结论的是:ACD;故答案为:ACD【考点】本题考查了整式的混合运算,以及有理数的混合运算,熟练掌握运算法则是解题的关键2、ABC【解析】【分
7、析】根据实数与数轴,有理数与无理数的定义,平方根和立方根的定义进行逐一判断即可【详解】解:A、有理数和数轴上的点不一一对应,数轴上的点也可以表示无理数,故该选项符合题意;B. 不带根号的数不一定是有理数,例如是无理数,故该选项符合题意;C. 负数有立方根,故该选项符合题意;D. 是17的平方根,故此选项不符合题意;故选ABC【考点】本题主要考查了实数与数轴,有理数与无理数的定义,平方根和立方根的定义,解题的关键在于能够熟练掌握相关知识进行求解3、ABD【解析】【分析】如果 那么是的立方根,根据立方根的含义逐一分析可得答案.【详解】解:的立方根是,故符合题意;没有平方根,故符合题意; 16的立方
8、根是,故不符合题意;0.01的立方根是 故符合题意;故选:【考点】本题考查的是立方根的含义及求一个数的立方根,掌握立方根的含义是解题的关键.4、EGH【解析】【分析】根据无理数的定义,无限不循环小数是无理数,即可求解【详解】解:,0,是有理数;,0.020020002,是无理数,故选:EGH【考点】本题主要考查了无理数的定义,熟练掌握无限不循环小数是无理数是解题的关键5、ABC【解析】【分析】根据二次根式的性质化简,负整数指数幂,零指数幂以及二次根式的减法计算法则进行求解即可【详解】解:A、原式|2|2,符合题意;B、原式,符合题意;C、原式1,符合题意;D、原式,不符合题意,故选ABC【考点
9、】此题考查了二次根式的加减法,负整数指数幂和零指数幂,熟练掌握运算法则是解本题的关键三、填空题1、且【解析】【分析】根据分式的值为零,分子等于0,分母不等于0即可求解.【详解】由题意得:且解得:且故填:且.【考点】主要考查分式的值为零的条件,注意:分式的值为零,分子等于0,分母不等于0.2、12【解析】【分析】根据题中“数对”的新定义,求出所求即可【详解】解:根据题中的新定义得:(-3)2+2+1=9+2+1=12,故答案为:12【考点】此题考查了有理数的混合运算,弄清题中的新定义是解本题的关键3、【解析】【分析】用有理数逼近无理数,求无理数的近似值【详解】解:,故表示数的点P应落在线段上故答
10、案为:【考点】此题主要考查了估算无理数的大小估算及应用,正确掌握估算及应用是解此题关键4、【解析】【分析】根据分式的运算法则化简,即可求解【详解】故答案为:【考点】此题主要考查分式的混合运算,解题的关键是熟知其运算法则5、【解析】【分析】根据数轴确定出被覆盖的数的范围,再根据无理数的大小确定出答案即可【详解】因为,所以,所以,故不在此范围;因为,所以,故在此范围;因为,所以,故不在此范围.所以被墨迹覆盖的数是.故答案为.【考点】此题考查估算无理数的大小,实数与数轴,解题关键在于估算出取值范围.四、解答题1、(1);(2)【解析】【分析】(1)根据乘法分配律相乘,再化简二次根式即可;(2)先用完
11、全平方公式进行计算,再合并即可【详解】解:(1)= =(2) =【考点】本题考查了二次根式的运算,解题关键是熟练运用二次根式运算法则和乘法公式进行准确计算2、(1)15;(2)6;(3)3;(4)+1.【解析】【分析】根据二次根式的公式化简即可.【详解】(1)原式=12-3+6=(12-3+6)=15;(2)原式=4+2+2=6;(3)原式=2+3-2=3;(4)原式=3+1=+1.【考点】本题考查二次根式的计算,注意合并同类二次根式.3、【解析】【分析】根据实数的混合运算法则进行计算即可【详解】解:原式=【考点】本题考查实数的混合运算,应用到负指数幂、零指数幂、绝对值、算数平方根等知识,掌握
12、这些知识为解题关键4、(1) ;(2)【解析】【分析】(1)根据负整数指数幂以及零指数幂运算即可求解;(2)根据同底数幂相乘(除),底数不变,指数相加(减),即可求解【详解】解:(1)原式;(2)原式【考点】本题目考查整数指数幂,涉及知识点有正整数指数幂、零指数幂、负整数指数幂等,难度一般,熟练掌握整数指数幂的运算法则是顺利解题的关键5、2a,当a=0时,原式=2,当a=2时,原式=0【解析】【分析】原式的括号内根据平方差和完全平方公式化简约分,括号外根据分式的除法法则即可化简原式,最后a的负整数解是0,1,2,注意分式的分母不能为零,所以a不能取1【详解】原式=1-a+1=2-a不等式的非负整数解是0,1,2,分式分母不能为零,a不取1当a=0时,原式=2,或当a=2时,原式=0【考点】本题考查了分式的混合运算,平方差和完全平方公式,除法法则等知识,要注意分式的分母不能为零