1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版九年级数学上册期末综合练习试题 (A)卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、已知学校航模组设计制作的火箭升空高度h(m)与飞行时间t(s)满
2、足函数表达式ht224t1,则下列说法中正确的是()A点火后1s和点火后3s的升空高度相同B点火后24s火箭落于地面C火箭升空的最大高度为145mD点火后10s的升空高度为139m2、有6张扑克牌(如图),背面朝上,从中任抽一张,则抽到方块牌的概率是()ABCD3、若m,n是方程x2x2 0220的两个根,则代数式(m22m2 022)(n22n2 022)的值为()A2 023B2 022C2 021D2 0204、如图,在等腰RtABC中,ACBC,点P在以斜边AB为直径的半圆上,M为PC的中点当点P沿半圆从点A运动至点B时,点M运动的路径长是()ABCD25、如图,一个油桶靠在直立的墙边
3、,量得并且则这个油桶的底面半径是()ABCD二、多选题(5小题,每小题4分,共计20分)1、在同一平面直角坐标系中,函数y=ax2+bx与y=bx+a的图象不可能是()AB 线 封 密 内 号学级年名姓 线 封 密 外 CD2、如图,如果AB为O的直径,弦CDAE,垂足为E,那么下列结论中,正确的是()AB弧BC弧BDCBAC=BADDACAD3、下列方程中,关于x的一元二次方程有()Ax2=0Bax2+bx+c=0Cx23=xDa2+ax=0E(m1)x2+4x+=0FG=2H(x+1)2=x294、下列方程一定不是一元二次方程的是()ABCD5、如图,二次函败y=ax2+bx+c(a、b、
4、c为常数,且a0)的图象与x轴的交点的横坐标分别为1、3,则下列结论中正确的有()Aabc0B2a+b=0C3a+2c0D对于任意x均有ax2a+bxb0第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、如图,直线yx+6与x轴、y轴分别交于A、B两点,点P是以C(1,0)为圆心,1为半径的圆上一点,连接PA,PB,则PAB面积的最大值为_2、如图,是的内接正三角形,点是圆心,点,分别在边,上,若,则的度数是_度3、如图,AB是O的直径,弦CDAB于点E若AB10,AE1,则弦CD的长是_ 线 封 密 内 号学级年名姓 线 封 密 外 4、如图,I是ABC的内心,B60,
5、则AIC_5、中国“一带一路”倡议给沿线国家带来很大的经济效益若沿线某地区居民2017年人均收入300美元,预计2019年人均收入将达到432美元,则2017年到2019年该地区居民年人均收入增长率为_.四、解答题(5小题,每小题8分,共计40分)1、如图所示,抛物线的对称轴为直线,抛物线与轴交于、两点,与轴交于点(1)求抛物线的解析式;(2)连结,在第一象限内的抛物线上,是否存在一点,使的面积最大?最大面积是多少?2、2022年冬奥会即将在北京召开,某网络经销商购进了一批以冬奥会为主题的文化衫进行销售,文化衫的进价为每件30元,当销售单价定为70元时,每天可售出20件,每销售一件需缴纳网络平
6、台管理费2元,为了扩大销售,增加盈利,决定采取适当的降价措施,经调查发现:销售单价每降低1元,则每天可多售出2件(销售单价不低于进价),若设这款文化衫的销售单价为x(元),每天的销售量为y(件)(1)求每天的销售量y(件)与销售单价x(元)之间的函数关系式;(2)当销售单价为多少元时,销售这款文化衫每天所获得的利润最大,最大利润为多少元?3、已知x1,x2是关于x的一元二次方程x2-4mx+4m2-90的两实数根(1)若这个方程有一个根为-1,求m的值;(2)若这个方程的一个根大于-1,另一个根小于-1,求m的取值范围;(3)已知RtABC的一边长为7,x1,x2恰好是此三角形的另外两边的边长
7、,求m的值4、顶点为D的抛物线yx2+bx+c交x轴于A、B(3,0),交y轴于点C,直线yx+m经过点C,交x轴于E(4,0)(1)求出抛物线的解析式;(2)如图1,点M为线段BD上不与B、D重合的一个动点,过点M作x轴的垂线,垂足为N,设点M的横坐标为x,四边形OCMN的面积为S,求S与x之间的函数关系式,并求S的最大值;(3)点P为x轴的正半轴上一个动点,过P作x轴的垂线,交直线yx+m于G,交抛物线于H,连接CH,将CGH沿CH翻折,若点G的对应点F恰好落在y轴上时,请直接写出点P的坐标5、已知关于的一元二次方程有实数根.(1)求的取值范围. 线 封 密 内 号学级年名姓 线 封 密
8、外 (2)若该方程的两个实数根为、,且,求的值.-参考答案-一、单选题1、C【解析】【分析】分别求出t=1、3、24、10时h的值可判断A、B、D三个选项,将解析式配方成顶点式可判断C选项【详解】解:A、当t=1时,h=24;当t=3时,h=64;所以点火后1s和点火后3s的升空高度不相同,此选项错误;B、当t=24时,h=10,所以点火后24s火箭离地面的高度为1m,此选项错误;C、由ht224t1=(t-12)2+145知火箭升空的最大高度为145m,此选项正确;D、当t=10时,h=141m,此选项错误;故选:C【考点】本题主要考查二次函数的应用,解题的关键是熟练掌握二次函数的性质2、A
9、【解析】【分析】m表示事件A发生可能出现的次数,n表示一次试验所有等可能出现的次数;代入公式即可求得概率.【详解】解:观察图形知:6张扑克中有2张方块,所以从中任抽一张,则抽到方块的概率 故选A【考点】考查概率的计算,明确概率的意义是解题的关键,概率等于所求情况数与总情况数的比.3、B【解析】【详解】解:m、n是方程x2-x-2022=0的两个根,m2-m-2022=0,n2-n-2022=0,mn=-2022,m2-m=2022,n2-n=2022,(m22m2 022)(n22n2 022)=(m2-m-m-2022)(-(n2-n)+n+2022)=(2022-m-2022)(-2022
10、+n+2022)=-mn=2022,故选:B【考点】本题考查了一元二次方程的解的定义和一元二次方程根与系数的关系,能根据已知条件得出m2-m-2022=0,n2-n-2022=0,mn=-2022是解此题的关键4、B【解析】 线 封 密 内 号学级年名姓 线 封 密 外 【分析】取AB的中点O、AC的中点E、BC的中点F,连接OC、OP、OM、OE、OF、EF,如图,利用勾股定理得到AB的长,进而可求出OC,OP的长,求得CMO=90,于是得到点M在以OC为直径的圆上,然后根据圆的周长公式计算点M运动的路径长【详解】解:取AB的中点O、AC的中点E、BC的中点F,连接OC、OP、OM、OE、O
11、F、EF,如图,在等腰RtABC中,AC=BC=2,AB=BC=4,OC=OP=AB=2,ACB=90,C在O上,M为PC的中点,OMPC,CMO=90,点M在以OC为直径的圆上,P点在A点时,M点在E点;P点在B点时,M点在F点O是AB中点,E是AC中点,OE是ABC的中位线,OE/BC,OE=BC=,OEAC,同理OFBC,OF=,四边形CEOF是矩形,OE=OF,四边形CEOF为正方形,EF=OC=2,M点的路径为以EF为直径的半圆,点M运动的路径长=2=故选:B【考点】本题考查了等腰三角形的性质,勾股定理,正方形的判定与性质,圆周角定理,以及动点的轨迹:点按一定规律运动所形成的图形为点
12、运动的轨迹解决此题的关键是利用圆周角定理确定M点的轨迹为以EF为直径的半圆5、C【解析】【分析】根据切线的性质,连接过切点的半径,构造正方形求解即可【详解】如图所示: 线 封 密 内 号学级年名姓 线 封 密 外 设油桶所在的圆心为O,连接OA,OC,AB、BC与O相切于点A、C,OAAB,OCBC,又ABBC,OA=OC,四边形OABC是正方形,OA=AB=BC=OC=0.8m,故选:C【考点】考查了切线的性质和正方形的判定、性质,解题关键是理解和掌握切线的性质二、多选题1、ABD【解析】【分析】首先根据图形中给出的一次函数图象确定a、b的符号,进而运用二次函数的性质判断图形中给出的二次函数
13、的图象是否符合题意,根据选项逐一讨论解析,即可解决问题【详解】A、对于直线y=bx+a来说,由图象可以判断,a0,b0;而对于抛物线来说,对称轴x= 0,应在y轴的左侧,图形错误,故符合题意B、对于直线y=bx+a来说,由图象可以判断,a0,b0;而对于抛物线来说,图象应开口向下,故不合题意,图形错误,故符合题意C、对于直线y=bx+a来说,由图象可以判断,a0,b0;而对于抛物线来说,图象开口向下,对称轴x=位于 y轴的右侧,图形正确,故不符合题意,D、对于直线y=bx+a来说,由图象可以判断,a0,b0;而对于抛物线来说,图象开口向下,a0,故不合题意,图形错误,故符合题意故选ABD【考点
14、】主要考查了一次函数、二次函数图象的性质及其应用问题;解题的方法是首先根据其中一次函数图象确定a、b的符号,进而判断另一个函数的图象是否符合题意;解题的关键是灵活运用一次函数、二次函数图象的性质来分析、判断、解答2、ABC【解析】【分析】根据垂径定理逐个判断即可【详解】解:AB为O的直径,弦CDAB垂足为E,则AB是垂直于弦CD的直径,就满足垂径定理,因而CE=DE,弧BC=弧BD,BAC=BAD都是正确的根据条件可以得到AB是CD的垂直平分线,因而AC=AD所以D是错误的故选:ABC【考点】本题主要考查的是对垂径定理的记忆与理解,做题的关键是掌握垂径定理的应用3、AC【解析】 线 封 密 内
15、 号学级年名姓 线 封 密 外 【分析】根据一元二次方程的定义逐个判断即可【详解】解:A.x2=0 ,C.x23=x 符合一元二次方程的定义;B.ax2+bx+c=0中,当a=0时,不是一元二次方程;D.a2+a-x=0是关于x的一元一次方程;E.(m1)x2+4x+=0,当m=1时为关于x的一元一次方程;F.+ =分母中含有字母,是分式方程;G.=2是无理方程;H.(x+1)2=x2-9展开后为x2+2x+1=x2-9,即2x+1=-9是一元一次方程故选AC【考点】本题考查了一元二次方程的定义,一元二次方程具有以下三个特点:(1)只含有一个未知数;(2)未知数的最高次数是2;(3)是整式方程
16、4、AB【解析】【分析】根据只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程进行分析即可【详解】解:A、分母含有未知数,一定不是一元二次方程,故本选项符合题意;B、含有两个未知数,一定不是一元二次方程,故本选项符合题意;C、当a=0 时,不是一元二次方程,当a0时,是一元二次方程,故本选项不符合题意;D、是一元二次方程,故本选项不符合题意故选:AB【考点】本题考查的是一元二次方程的定义,熟知只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程是解答此题的关键5、BD【解析】【分析】由抛物线开口方向得到a0,利用抛物线与x轴的交点问题和抛物线的对称性得到抛物线的对
17、称轴为直线x=1,即-=1,所以b=-2a0,利用抛物线与y轴的交点位置得到c0,则可对A进行判断;利用b=-2a可对B进行判断;由于x=-1时,y=0,所以a-b+c=0,则c=-3a,3a+2c=-3a0,于是可对C进行判断;根据二次函数性质,x=1时,y的值最小,所以a+b+cax2+bx+c,于是可对D进行判断【详解】解:抛物线开口向上,a0,抛物线与x轴的交点的坐标分别为(-1,0),(3,0),抛物线的对称轴为直线x=1,即-=1,b=-2a0,抛物线与y轴的交点在x轴下方,c0,abc0,所以A错误;b=-2a,2a+b=0,所以B正确;x=-1时,y=0,a-b+c=0,即a+
18、2a+c=0,c=-3a, 线 封 密 内 号学级年名姓 线 封 密 外 3a+2c=3a-6a=-3a0,所以C错误;x=1时,y的值最小,对于任意x,a+b+cax2+bx+c,即ax2-a+bx-b0,所以D正确故选:BD【考点】本题考查了二次函数与不等式(组):函数值y与某个数值m之间的不等关系,一般要转化成关于x的不等式,解不等式求得自变量x的取值范围;利用两个函数图象在直角坐标系中的上下位置关系求自变量的取值范围,可作图利用交点直观求解,也可把两个函数解析式列成不等式求解三、填空题1、32【解析】【分析】如图,作CHAB于H交O于E、F,求出A、B的坐标,根据勾股定理求出AB,再由
19、SABCABCHOBAC求出点C到AB的距离CH,即可求出圆C上点到AB的最大距离,根据面积公式求出即可【详解】如图,作CHAB于H交O于E、F,直线yx+6与x轴、y轴分别交于A、B两点,当y=0时,可得0=x+6,解得:x=8,A(8,0),当x=0时,得y=6,B(0,6),OA8,OB6,10,C(1,0),AC=8+1=9,SABCABCHOBAC,CH=5.4,FHCH+CF=5.4+16.4,即C上到AB的最大距离为6.4,PAB面积的最大值106.432,故答案为32【考点】本题考查了三角形的面积,勾股定理、三角形等面积法求高、求圆心到直线的距离等知识,解此题的关键是求出圆上的
20、点到直线AB的最大距离2、120【解析】 线 封 密 内 号学级年名姓 线 封 密 外 【分析】本题可通过构造辅助线,利用垂径定理证明角等,继而利用SAS定理证明三角形全等,最后根据角的互换结合同弧所对的圆周角等于圆心角的一半求解本题【详解】连接OA,OB,作OHAC,OMAB,如下图所示:因为等边三角形ABC,OHAC,OMAB,由垂径定理得:AH=AM,又因为OA=OA,故OAHOAM(HL)OAH=OAM又OA=OB,AD=EB,OAB=OBA=OAD,ODAOEB(SAS),DOA=EOB,DOE=DOA+AOE=AOE+EOB=AOB又C=60以及同弧,AOB=DOE=120故本题答
21、案为:120【考点】本题考查圆与等边三角形的综合,本题目需要根据等角的互换将所求问题进行转化,构造辅助线是本题难点,全等以及垂径定理的应用在圆综合题目极为常见,圆心角、弧、圆周角的关系需熟练掌握3、6【解析】【分析】连接OC,根据勾股定理求出CE,根据垂径定理计算即可【详解】连接OC,AB是O的直径,弦CDAB,CD2CE,OEC90,AB10,AE1,OC5,OE514,在RtCOE中,CE3,CD2CE6,故答案为6【考点】本题考查了垂径定理、勾股定理,掌握垂直于弦的直径平分这条弦,并且平分弦所对的两条弧是解题的关键4、120 线 封 密 内 号学级年名姓 线 封 密 外 【解析】【分析】
22、根据三角形的内切圆的圆心是三角形三个角的平分线的交点即可求解【详解】B=60,BAC+BCA=120三角形的内切圆的圆心是三角形三个角的平分线的交点,IAC=BAC,ICA=BCA,IAC+ICA=(BAC+BCA)=60AIC=18060=120故答案为120【考点】此题主要考查利用三角形的内切圆的圆心是三角形三个角的平分线的交点性质进行角度求解,熟练掌握,即可解题.5、20【解析】【分析】设该地区人均收入增长率为x,根据2017年人均收入300美元,预计2019年人均收入将达到432美元,可列方程求解.【详解】解:设该地区人均收入增长率为x,则300(1+x)2=432,(1+x)2=1.
23、44,解得x=0.2(x=-2.2舍),该地区人均收入增长率为20.故本题答案应为:20.【考点】一元二次方程在实际生活中的应用是本题的考点,根据题意列出方程是解题的关键.四、解答题1、(1);(2)存在,当时,面积最大为16,此时点点坐标为【解析】【分析】(1)用待定系数法解答便可;(2)设点的坐标为,连结、根据对称性求出点B的坐标,根据得到二次函数关系式,最后配方求解即可【详解】解:(1)抛物线过点,抛物线的对称轴为直线,可设抛物线为抛物线过点,解得 线 封 密 内 号学级年名姓 线 封 密 外 抛物线的解析式为,即(2)存在,设点的坐标为,连结、点A、关于直线对称,且 当时,面积最大为1
24、6,此时点点坐标为【考点】本题主要考查了二次函数的图象与性质,待定系数法,三角形面积公式以及二次函数的最值求法,根据图形得出由此得出二次函数关系式是解答此题的关键2、(1);(2)当销售单价为56元时,每天所获得的利润最大,最大利润为1152元【解析】【分析】(1)根据“销售单价每降低1元,则每天可多售出2件”列函数关系式;(2)根据总利润单件利润销售量列出函数关系式,然后利用二次函数的性质分析其最值【详解】解:(1)由题意可得:,整理,得:,每天的销售量y(件)与销售单价x(元)之间的函数关系式为;(2)设销售所得利润为w,由题意可得:,整理,得:,当时,w取最大值为1152,当销售单价为5
25、6元时,销售这款文化衫每天所获得的利润最大,最大利润为1152元【考点】此题考查二次函数的应用销售问题,涉及运算能力及一次函数应用,熟练掌握相关知识是解题的关键3、 (1)m的值为1或-2(2)-2m1(3)m或m【解析】 线 封 密 内 号学级年名姓 线 封 密 外 【分析】(1)把x=-1代入方程,列出m的一元二次方程,求出m的值;(2)首先用m表示出方程的两根,然后列出m的不等式组,求出m的取值范围;(3)首先用m表示出方程的两根,分直角ABC的斜边长为7或2m+3,根据勾股定理求出m的值.(1)解:x1,x2是一元二次方程x2-4mx+4m2-90的两实数根,这个方程有一个根为-1,将
26、x-1代入方程x2-4mx+4m2-90,得1+4m+4m2-90解得m1或m-2m的值为1或-2(2)解:x2-4mx+4m29,(x-2m)29,即x-2m3x12m+3,x22m-32m+32m-3,解得-2m1m的取值范围是-2m1(3)解:由(2)可知方程x2-4mx+4m2-90的两根分别为2m+3,2m-3若RtABC的斜边长为7,则有49(2m+3)2+(2m-3)2解得m边长必须是正数,m若斜边为2m+3,则(2m+3)2(2m-3)2+72解得m综上所述,m或m【考点】本题主要考查了根的判别式与根与系数的关系的知识,解答本题的关键是熟练掌握根与系数关系以及根的判别式的知识,
27、此题难度一般.4、 (1)yx2+2x+3;(2)S(x)2+;当x时,S有最大值,最大值为;(3)存在,点P的坐标为(4,0)或(,0).【解析】【分析】(1)将点E代入直线解析式中,可求出点C的坐标,将点C、B代入抛物线解析式中,可求出抛物线解析式(2)将抛物线解析式配成顶点式,可求出点D的坐标,设直线BD的解析式,代入点B、D,可求出直线BD的解析式,则MN可表示,则S可表示(3)设点P的坐标,则点G的坐标可表示,点H的坐标可表示,HG长度可表示,利用翻折推出CGHG,列等式求解即可【详解】(1)将点E代入直线解析式中, 线 封 密 内 号学级年名姓 线 封 密 外 04+m,解得m3,
28、解析式为yx+3,C(0,3),B(3,0),则有,解得,抛物线的解析式为:yx2+2x+3;(2)yx2+2x+3(x1)2+4,D(1,4),设直线BD的解析式为ykx+b,代入点B、D,解得,直线BD的解析式为y2x+6,则点M的坐标为(x,2x+6),S(3+62x)x(x)2+,当x时,S有最大值,最大值为(3)存在,如图所示,设点P的坐标为(t,0),则点G(t,t+3),H(t,t2+2t+3),HG|t2+2t+3(t+3)|t2t|CGt,CGH沿GH翻折,G的对应点为点F,F落在y轴上,而HGy轴,HGCF,HGHF,CGCF,GHCCHF,FCHCHG,FCHFHC,GC
29、HGHC,CGHG, 线 封 密 内 号学级年名姓 线 封 密 外 |t2t|t,当t2tt时,解得t10(舍),t24,此时点P(4,0)当t2tt时,解得t10(舍),t2,此时点P(,0)综上,点P的坐标为(4,0)或(,0)【考点】此题考查了待定系数法求函数解析式,点坐标转换为线段长度,几何图形与二次函数结合的问题,最后一问推出CGHG为解题关键5、(1).(2).【解析】【分析】(1)根据方程的系数结合根的判别式0,即可得出关于m的一元一次不等式,解之即可得出m的取值范围;(2)由根与系数的关系可得出x1+x2=6,x1x2=4m+1,结合|x1-x2|=4可得出关于m的一元一次方程,解之即可得出m的值【详解】(1)关于x的一元二次方程x2-6x+(4m+1)=0有实数根,=(-6)2-41(4m+1)0,解得:m2;(2)方程x2-6x+(4m+1)=0的两个实数根为x1、x2,x1+x2=6,x1x2=4m+1,(x1-x2)2=(x1+x2)2-4x1x2=42,即32-16m=16,解得:m=1【考点】本题考查了根与系数的关系以及根的判别式,解题的关键是:(1)牢记“当0时,方程有实数根”;(2)利用根与系数的关系结合|x1-x2|=4,找出关于m的一元一次方程