收藏 分享(赏)

2022年综合复习人教版九年级数学上册期中模拟考试试题 卷(Ⅲ)(解析版).docx

上传人:a**** 文档编号:709283 上传时间:2025-12-13 格式:DOCX 页数:26 大小:587.07KB
下载 相关 举报
2022年综合复习人教版九年级数学上册期中模拟考试试题 卷(Ⅲ)(解析版).docx_第1页
第1页 / 共26页
2022年综合复习人教版九年级数学上册期中模拟考试试题 卷(Ⅲ)(解析版).docx_第2页
第2页 / 共26页
2022年综合复习人教版九年级数学上册期中模拟考试试题 卷(Ⅲ)(解析版).docx_第3页
第3页 / 共26页
2022年综合复习人教版九年级数学上册期中模拟考试试题 卷(Ⅲ)(解析版).docx_第4页
第4页 / 共26页
2022年综合复习人教版九年级数学上册期中模拟考试试题 卷(Ⅲ)(解析版).docx_第5页
第5页 / 共26页
2022年综合复习人教版九年级数学上册期中模拟考试试题 卷(Ⅲ)(解析版).docx_第6页
第6页 / 共26页
2022年综合复习人教版九年级数学上册期中模拟考试试题 卷(Ⅲ)(解析版).docx_第7页
第7页 / 共26页
2022年综合复习人教版九年级数学上册期中模拟考试试题 卷(Ⅲ)(解析版).docx_第8页
第8页 / 共26页
2022年综合复习人教版九年级数学上册期中模拟考试试题 卷(Ⅲ)(解析版).docx_第9页
第9页 / 共26页
2022年综合复习人教版九年级数学上册期中模拟考试试题 卷(Ⅲ)(解析版).docx_第10页
第10页 / 共26页
2022年综合复习人教版九年级数学上册期中模拟考试试题 卷(Ⅲ)(解析版).docx_第11页
第11页 / 共26页
2022年综合复习人教版九年级数学上册期中模拟考试试题 卷(Ⅲ)(解析版).docx_第12页
第12页 / 共26页
2022年综合复习人教版九年级数学上册期中模拟考试试题 卷(Ⅲ)(解析版).docx_第13页
第13页 / 共26页
2022年综合复习人教版九年级数学上册期中模拟考试试题 卷(Ⅲ)(解析版).docx_第14页
第14页 / 共26页
2022年综合复习人教版九年级数学上册期中模拟考试试题 卷(Ⅲ)(解析版).docx_第15页
第15页 / 共26页
2022年综合复习人教版九年级数学上册期中模拟考试试题 卷(Ⅲ)(解析版).docx_第16页
第16页 / 共26页
2022年综合复习人教版九年级数学上册期中模拟考试试题 卷(Ⅲ)(解析版).docx_第17页
第17页 / 共26页
2022年综合复习人教版九年级数学上册期中模拟考试试题 卷(Ⅲ)(解析版).docx_第18页
第18页 / 共26页
2022年综合复习人教版九年级数学上册期中模拟考试试题 卷(Ⅲ)(解析版).docx_第19页
第19页 / 共26页
2022年综合复习人教版九年级数学上册期中模拟考试试题 卷(Ⅲ)(解析版).docx_第20页
第20页 / 共26页
2022年综合复习人教版九年级数学上册期中模拟考试试题 卷(Ⅲ)(解析版).docx_第21页
第21页 / 共26页
2022年综合复习人教版九年级数学上册期中模拟考试试题 卷(Ⅲ)(解析版).docx_第22页
第22页 / 共26页
2022年综合复习人教版九年级数学上册期中模拟考试试题 卷(Ⅲ)(解析版).docx_第23页
第23页 / 共26页
2022年综合复习人教版九年级数学上册期中模拟考试试题 卷(Ⅲ)(解析版).docx_第24页
第24页 / 共26页
2022年综合复习人教版九年级数学上册期中模拟考试试题 卷(Ⅲ)(解析版).docx_第25页
第25页 / 共26页
2022年综合复习人教版九年级数学上册期中模拟考试试题 卷(Ⅲ)(解析版).docx_第26页
第26页 / 共26页
亲,该文档总共26页,全部预览完了,如果喜欢就下载吧!
资源描述

1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版九年级数学上册期中模拟考试试题 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、扬帆中学有一块长,宽的矩形空地,计划在这块空地上划出四分之一的区域

2、种花,小禹同学设计方案如图所示,求花带的宽度设花带的宽度为,则可列方程为()ABCD2、小明在研究抛物线(h为常数)时,得到如下结论,其中正确的是()A无论x取何实数,y的值都小于0B该抛物线的顶点始终在直线上C当时,y随x的增大而增大,则D该抛物线上有两点,若,则3、使用家用燃气灶烧开同一壶水所需的燃气量(单位:)与旋钮的旋转角度(单位:度)()近似满足函数关系y=ax2+bx+c(a0).如图记录了某种家用燃气灶烧开同一壶水的旋钮角度与燃气量的三组数据,根据上述函数模型和数据,可推断出此燃气灶烧开一壶水最节省燃气的旋钮角度约为()ABCD4、二次函数yax2+bx+c的部分图象如图所示,由

3、图象可知该抛物线与x轴的交点坐标是()A(1,0)和(5,0)B(1,0)和(5,0)C(0,1)和(0,5)D(0,1)和(0,5)5、如图1,矩形中,点为的中点,点沿从点运动到点,设,两点间的距离为,图2是点运动时随变化的关系图象,则的长为()ABCD 线 封 密 内 号学级年名姓 线 封 密 外 二、多选题(5小题,每小题4分,共计20分)1、已知二次函数y=ax2+bx+c的图象如图,其对称轴为x1,则下列结论中正确的是()A4acBabc0C2ab0Dabc0Eabc02、二次函数y=ax2+bx+c(a0)的部分图象如图所示,图象过点(1,0),对称轴为直线x=2,下列结论中正确的

4、有()A4a+b=0B9a+c3bC7a3b+2c0D若点A(3,y1)、点B(,y2)、点C(7,y3)在该函数图象上,则y1y3y2E若方程a(x+1)(x5)=3的两根为x1和x2,且x1x2,则x115x23、一个两位数,十位数字与个位数字之和是5,把这个数的个位数字与十位数字对调后,所得的新的两位数与原来的两位数的乘积是736,原来的两位数是()A23B32CD4、如图,O是正ABC内一点,OA3,OB4,OC5,将线段BO以点B为旋转中心逆时针旋转60得到线段BO,下列结论中正确的结论是( )ABOA可以由BOC绕点B逆时针旋转60得到B点O与O的距离为4CAOB150DS四边形A

5、OBO6+3ESAOC+SAOB6+5、以图(以点O为圆心,半径为1的半圆)作为“基本图形”,分别经历如下变换能得到图的有()A只要向右平移1个单位B先以直线为对称轴进行翻折,再向右平移1个单位C先绕着点O旋转,再向右平移1个单位D绕着的中点旋转即可第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、若点A(m,5)与点B(4,n)关于原点成中心对称,则mn_ 线 封 密 内 号学级年名姓 线 封 密 外 2、已知一元二次方程ax2+bx+c=0(a0),下列结论:若方程两根为-1和2,则2a+c=0;若ba+c,则方程有两个不相等的实数根;若b=2a+3c,则方程有两个不

6、相等的实数根;若m是方程的一个根,则一定有b2-4ac=(2am+b)2成立其中结论正确的序号是_3、试写出一个二次函数关系式,使它对应的一元二次方程的一个根为0,另一个根在1到2之间:_4、如图,平行四边形ABCD中,点的坐标是,以点为顶点的抛物线经过轴上的点A,B,则此抛物线的解析式为_5、在平面直角坐标系中,将点A先向右平移4个单位,再向下平移6个单位得到点B,如果点A和点B关于原点对称,那么点A的坐标是_四、解答题(5小题,每小题8分,共计40分)1、如图1,抛物线y=ax2+bx+3交x轴于点A(1,0)和点B(3,0)(1)求该抛物线所对应的函数解析式;(2)如图2,该抛物线与y轴

7、交于点C,顶点为F,点D(2,3)在该抛物线上求四边形ACFD的面积;点P是线段AB上的动点(点P不与点A、B重合),过点P作PQx轴交该抛物线于点Q,连接AQ、DQ,当AQD是直角三角形时,求出所有满足条件的点Q的坐标2、解关于y的方程:by21y2+23、为增加农民收入,助力乡村振兴某驻村干部指导农户进行草莓种植和销售,已知草莓的种植成本为8元/千克,经市场调查发现,今年五一期间草莓的销售量y(千克)与销售单价x(元/千克)(8x40)满足的函数图象如图所示(1)根据图象信息,求y与x的函数关系式;(2)求五一期间销售草莓获得的最大利润4、渠县是全国优质黄花主产地,某加工厂加工黄花的成本为

8、30元/千克,根据市场调查发现,批发价定为48元/千克时,每天可销售500千克为增大市场占有率,在保证盈利的情况下,工厂采取降价措施批发价每千克降低1元,每天销量可增加50千克(1)写出工厂每天的利润元与降价元之间的函数关系当降价2元时,工厂每天的利润为多少元?(2)当降价多少元时,工厂每天的利润最大,最大为多少元?(3)若工厂每天的利润要达到9750元,并让利于民,则定价应为多少元?5、已知,是一元二次方程的两个实数根(1)求k的取值范围;(2)是否存在实数k,使得等式成立?如果存在,请求出k的值,如果不存在,请说明理由 线 封 密 内 号学级年名姓 线 封 密 外 -参考答案-一、单选题1

9、、D【解析】【分析】根据空白区域的面积矩形空地的面积可得.【详解】设花带的宽度为,则可列方程为,故选D【考点】本题主要考查由实际问题抽象出一元二次方程,解题的关键是根据图形得出面积的相等关系.2、C【解析】【分析】根据二次函数的对称轴、二次函数图象上点的坐标特征、二次函数的性质,判断即可【详解】解:A,当时,当时, ,故错误;B抛物线的顶点坐标为,当时,故错误;C抛物线开口向下,当时,y随x的增大而增大,故正确;D抛物线上有两点,若,点A到对称轴的距离大于点B到对称轴的距离,故错误故选C【考点】本题考查了二次函数的性质,二次函数图象上点的坐标特征,熟练掌握二次函数的性质是解题的关键3、C【解析

10、】【分析】根据已知三点和近似满足函数关系y=ax2+bx+c(a0)可以大致画出函数图象,并判断对称轴位置在36和54之间即可选择答案.【详解】解:由图表数据描点连线,补全图象可得如图,抛物线对称轴在36和54之间,约为41,旋钮的旋转角度在36和54之间,约为41时,燃气灶烧开一壶水最节省燃气,故选C,【考点】本题考查了二次函数的应用,二次函数的图象性质,熟练掌握二次函数图象的对称性质,判断对称轴 线 封 密 内 号学级年名姓 线 封 密 外 位置是解题关键,综合性较强,需要有较高的思维能力,用图象法解题是本题考查的重点4、A【解析】【分析】首先根据图像得出抛物线的对称轴和其中一个交点坐标,

11、然后根据二次函数的对称性即可求得另一个交点坐标【详解】解:由图像可得,抛物线的对称轴为,与x轴的一个交点坐标为(5,0),抛物线与x轴的两个交点关于对称轴对称,抛物线与x轴的另一个交点坐标为(1,0),故选:A【考点】此题考查了二次函数与x轴的交点,二次函数的对称性,解题的关键是根据二次函数的对称性求出与x轴的另一个交点坐标5、C【解析】【分析】先利用图2得出当P点位于B点时和当P点位于E点时的情况,得到AB和BE之间的关系以及,再利用勾股定理求解即可得到BE的值,最后利用中点定义得到BC的值【详解】解:由图2可知,当P点位于B点时,即,当P点位于E点时,即,则,,即,点为的中点,,故选:C【

12、考点】本题考查了学生对函数图象的理解与应用,涉及到了勾股定理、解一元二次方程、中点的定义等内容,解决本题的关键是能正确理解题意,能从图象中提取相关信息,能利用勾股定理建立方程等,本题蕴含了数形结合的思想方法二、多选题1、ADE【解析】【分析】根据二次函数开口方向、对称轴和图象性质判断即可;【详解】根据函数图像可知,二次函数与x轴有两个交点,则,故A正确;抛物线开口向上,又抛物线于y轴交于负半轴, 线 封 密 内 号学级年名姓 线 封 密 外 ,又,故B、C错误;由图象可知:当时,即,故D正确;当时,故E正确;故选ADE【点睛】本题主要考查了二次函数图象与系数的关系,准确分析判断是解题的关键2、

13、ABE【解析】【分析】根据抛物线的对称轴为直线x2,则有4a+b0,可得A正确;根据二次函数的对称性得到当x3时,函数值大于0,则9a+3b+c0,即9a+c3 b,可得B正确;由于x1时,y0,则ab+c0,易得c5a,所以7a-3b+2c9 a,再根据抛物线开口向下得a0,于是有7a3b+2c0,可得C错误;利用抛物线的对称性得到(3,)在抛物线上,然后利用二次函数的增减性可得D错误;作出直线 y3,然后依据函数图象进行判断可得E正确;综上即可得答案【详解】A项:x 2,4a+b0,故A正确B项:抛物线与x轴的一个交点为(-1,0),对称轴为直线x=2,另一个交点为(5,0),抛物线开口向

14、下,当x3时,y0,即9a+3b+c0,9a+c3b,故B正确C项:抛物线与x轴的一个交点为(1,0),ab+c0b4a,a+4a+c0,即c5a,7a3b+2c7a+12a10a9a,抛物线开口向下,a0,7a3b+2c0,故C错误;D项:抛物线的对称轴为x2,C(7,)在抛物线上,点(3,)与C(7,)关于对称轴x2对称,A(3,)在抛物线上,=,3 12 ,在对称轴的左侧,抛物线开口向下,y随x的增大而增大, ,故D错误E项:方程a(x+1)(x5)0的两根为x1或x5,过y3作x轴的平行线,直线y3与抛物线的交点的横坐标为方程的两根,抛物线与x轴交点为(-1,0),(5,0), 线 封

15、 密 内 号学级年名姓 线 封 密 外 依据函数图象可知:15,故E正确故答案为:ABE【点睛】本题考查了二次函数图象与系数的关系:二次函数y=ax+bx+c(a0),二次项系数a决定抛物线的开口方向和大小,当a0时,抛物线向上开口;当a0时,抛物线向下开口;一次项系数b和二次项系数 a共同决定对称轴的位置,当a与b同号时(即ab0),对称轴在y轴左;当a与b异号时(即ab0),对称轴在y轴右;常数项c决定抛物线与 y轴交点抛物线与y轴交于(0,c);抛物线与x轴交点个数由决定,=b4ac0时,抛物线与x轴有2个交点;=b4ac=0时,抛物线与x轴有1个交点;= b4 ac0时,抛物线与x轴没

16、有交点3、AB【解析】【分析】设原来的两位数十位上的数字为,则个位上的数字为,根据所得到的新两位数与原来的两位数的乘积为736,可列出方程求解即可【详解】解:设原来的两位数十位上的数字为,则个位上的数字为,依题意可得:,解得:,当时,符合题意,原来的两位数是23,当时,符合题意,原来的两位数是32,原来的两位数是23或32,故选AB【点睛】本题考查了一元二次方程的应用,解题的关键是能正确用每一数位上的数字表示这个两位数4、ABCE【解析】【分析】证明可判断 证明是等边三角形,可判断 利用是等边三角形,证明可判断 由是等边三角形,可得四边形的面积,可判断如图,将绕点逆时针旋转与重合,对应,同理可

17、得:是边长为的等边三角形,是边长为的直角三角形,从而可判断【详解】解:由题意得:为等边三角形, BOA可以由BOC绕点B逆时针旋转60得到,故符合题意;如图,连接,由 是等边三角形,则点O与O的距离为4,故符合题意; 线 封 密 内 号学级年名姓 线 封 密 外 故符合题意;如图,过作于 是等边三角形, S四边形AOBO 故不符合题意;如图,将绕点逆时针旋转与重合,对应,同理可得:是边长为的等边三角形,是边长为的直角三角形,同理可得: 故符合题意;故选:【点睛】本题考查的是等边三角形的判定与性质,旋转的性质,勾股定理与勾股定理的逆定理的应用,全等三角形的判定与性质,熟练的做出正确的辅助线是解题

18、的关键.5、BCD【解析】【分析】观察两个半圆的位置关系,再确定能否通过图象变换得到,以及旋转、平移的方法【详解】解:由图可知,图(1)先以直线AB为对称轴进行翻折,再向右平移1个单位,或先绕着点O旋转180,再向右平移1个单位,或绕着OB的中点旋转180即可得到图(2) 线 封 密 内 号学级年名姓 线 封 密 外 故选BCD【点睛】本题考查了旋转、轴对称、平移的性质关键是根据变换图形的位置关系,确定变换规律三、填空题1、【解析】【分析】根据关于原点对称的点的坐标特征:关于原点对称的点,横纵坐标都互为相反数,进行求解即可【详解】解:点A(m,5)与点B(4,n)关于原点成中心对称,m=4,n

19、=-5,m+n=-5+4=-1,故答案为:-1【考点】本题主要考查了关于原点对称点的坐标特征,代数式求值,熟知关于原点对称的点的坐标特征是解题的关键2、故答案为:或【考点】本题考查新定义运算、解一元二次方程,根据题意理解新定义运算是解题的关键2【解析】【分析】利用根与系数的关系判断;由=b2-4ac判断;由判别式可判断;将x=m代入方程得am2=-(bm+c),再代入=(2am+b)2变形可判断【详解】解:若方程两根为-1和2,则=-12=-2,即c=-2a,2a+c=2a-2a=0,故正确;由ba+c不能判断=b2-4ac值的大小情况,故错误;若b=2a+3c,则=b2-4ac=4(a+c)

20、2+5c20,一元二次方程ax2+bx+c=0有两个不相等的实数根,故正确若m是方程ax2+bx+c=0的一个根,所以有am2+bm+c=0,即am2=-(bm+c),而(2am+b)2=4a2m2+4abm+b2=4a-(bm+c)+4abm+b2=4abm-4abm-4ac+b2=b2-4ac故正确;故答案为:【考点】本题考查了一元二次方程ax2+bx+c=0(a0)的根与系数的关系及根的判别式=b2-4ac:当0,方程有两个不相等的实数根;当=0,方程有两个相等的实数根;当0,方程没有实数根3、【解析】【分析】由一元二次方程的一个根为0,另一个根在1到2之间,可设两个根分别为0和,即可得

21、此一元二次方程是:,继而求得答案【详解】解:一元二次方程的一个根为0,另一个根在1到2之间, 线 封 密 内 号学级年名姓 线 封 密 外 设两个根分别为0和,此一元二次方程是:,二次函数关系式为:,故答案为【考点】此题考查了一元二次方程根与系数的关系以及二次函数与一元二次方程的关系此题难度适中,注意掌握二次函数与一元二次方程的关系是关键4、【解析】【分析】根据平行四边形的性质得到CD=AB=4,即C点坐标为,进而得到A点坐标为,B点坐标为,利用待定系数法即可求得函数解析式【详解】四边形ABCD为平行四边形CD=AB=4C点坐标为A点坐标为,B点坐标为设函数解析式为,代入C点坐标有解得函数解析

22、式为,即故答案为【考点】本题考查了平行四边形的性质,和待定系数法求二次函数解析式,问题的关键是求出A点或B点的坐标5、【解析】【分析】先按题目要求对A、B点进行平移,再根据原点对称的特征:横纵坐标互为相反数进行列方程,求解【详解】设,向右平移4个单位,再向下平移6个单位得到 A、B关于原点对称,解得,故答案为:【考点】本题考查点的平移和原点对称的性质,掌握这些是解题关键四、解答题1、(1)y=x2+2x+3;(2)S四边形ACFD= 4;Q点坐标为(1,4)或(,)或(,) 线 封 密 内 号学级年名姓 线 封 密 外 【解析】【分析】此题涉及的知识点是抛物线的综合应用,难度较大,需要有很好的

23、逻辑思维,解题时先根据已知点的坐标列方程求出函数解析式,然后再根据解析式和已知条件求出四边形的面积和点的坐标【详解】(1)由题意可得,解得,抛物线解析式为y=x2+2x+3;(2)y=x2+2x+3=(x1)2+4,F(1,4),C(0,3),D(2,3),CD=2,且CDx轴,A(1,0),S四边形ACFD=SACD+SFCD=23+2(43)=4;点P在线段AB上,DAQ不可能为直角,当AQD为直角三角形时,有ADQ=90或AQD=90,i当ADQ=90时,则DQAD,A(1,0),D(2,3),直线AD解析式为y=x+1,可设直线DQ解析式为y=x+b,把D(2,3)代入可求得b=5,直

24、线DQ解析式为y=x+5,联立直线DQ和抛物线解析式可得,解得或,Q(1,4);ii当AQD=90时,设Q(t,t2+2t+3),设直线AQ的解析式为y=k1x+b1,把A、Q坐标代入可得,解得k1=(t3),设直线DQ解析式为y=k2x+b2,同理可求得k2=t,AQDQ,k1k2=1,即t(t3)=1,解得t=,当t=时,t2+2t+3=,当t=时,t2+2t+3=,Q点坐标为(,)或(,);综上可知Q点坐标为(1,4)或(,)或(,)【点睛】此题重点考察学生对于抛物线的综合应用能力,熟练抛物线的图像和性质,四边形面积的计算方法,点坐标的求解方式是解答本题的关键2、当b1时,原方程的解为y

25、;当b1时,原方程无实数解【解析】【分析】 线 封 密 内 号学级年名姓 线 封 密 外 把b看做常数根据解方程的步骤:先移项,再合并同类项,系数化为1,即可得出答案【详解】解:移项得:by2y22+1,合并同类项得:(b1)y23,当b1时,原方程无解;当b1时,原方程的解为y;当b1时,原方程无实数解【点睛】此题主要考查一元二次方程的求解,解题的关键是根据题意分类讨论3、(1);(2)最大利润为3840元【解析】【分析】(1)分为8x32和32x40求解析式;(2)根据“利润(售价成本)销售量”列出利润的表达式,在根据函数的性质求出最大利润【详解】解:(1)当8x32时,设ykxb(k0)

26、,则,解得:,当8x32时,y3x216,当32x40时,y120,;(2)设利润为W,则:当8x32时,W(x8)y(x8)(3x216)3(x40)23072,开口向下,对称轴为直线x40,当8x32时,W随x的增大而增大,x32时,W最大2880,当32x40时,W(x8)y120(x8)120x960,W随x的增大而增大,x40时,W最大3840,38402880,最大利润为3840元【点睛】点评:本题以利润问题为背景,考查了待定系数法求一次函数的解析式、分段函数的表示、二次函数的性质,本题解题的时候要注意分段函数对应的自变量x的取值范围和函数的增减性,先确定函数的增减性,才能求得利润

27、的最大值4、(1),9600;(2)降价4元,最大利润为9800元;(3)43【解析】【分析】(1)若降价元,则每天销量可增加千克,根据利润公式求解并整理即可得到解析式,然后代 线 封 密 内 号学级年名姓 线 封 密 外 入求出对应函数值即可;(2)将(1)中的解析式整理为顶点式,然后利用二次函数的性质求解即可;(3)令可解出对应的的值,然后根据“让利于民”的原则选择合适的的值即可【详解】(1)若降价元,则每天销量可增加千克,整理得:,当时,每天的利润为9600元;(2),当时,取得最大值,最大值为9800,降价4元,利润最大,最大利润为9800元;(3)令,得:,解得:,要让利于民,(元)

28、定价为43元【点睛】本题考查二次函数的实际应用,弄清数量关系,准确求出函数解析式并熟练掌握二次函数的性质是解题关键5、(1);(2)【解析】【分析】(1)根据方程的系数结合0,即可得出关于k的一元一次不等式,解之即可得出k的取值范围;(2)根据根与系数的关系可得出x1x22,x1x2k2,结合,即可得出关于k的方程,解之即可得出k值,再结合(1)即可得出结论【详解】解:(1)一元二次方程有两个实数根,解得;(2)由一元二次方程根与系数关系,即,解得又由(1)知:,【点睛】本题考查了根与系数的关系以及根的判别式,解题的关键是:(1)牢记“当0时,方程有两个实数根”;(2)根据根与系数的关系结合,找出关于k的方程

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 语文

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1