1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版九年级数学上册期末专项测试试题 B卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、在中,AB,CD为两条弦,下列说法:若,则;若,则;若,则弧AB=2
2、弧CD;若,则.其中正确的有()A1个B2个C3个D4个2、5个红球、4个白球放入一个不透明的盒子里,从中摸出6个球,恰好红球与白球都摸到,这个事件()A不可能发生B可能发生C很可能发生D必然发生3、如图,在中,以点为圆心,为半径的圆与所在直线的位置关系是()A相交B相离C相切D无法判断4、如图,五边形是O的内接正五边形,则的度数为()ABCD5、由二次函数,可知()A其图象的开口向下B其图象的对称轴为直线x=-3C其最小值为1D当x0或m3(2)-9(3)或或【解析】【分析】(1)当,时,令时,求解方程的解即可;将P(m,n)代入yax2+3ax+c中,要使nc0,即可得,解出不等式即可;(
3、2)根据抛物线恒在x轴下方,可得,求出a的取值范围,根据符合条件的整数a只有三个,判断并求出c的取值范围,从而求出c的最小值;(3)根据点A的坐标得到抛物线解析式为,然后根据2cxc时,抛物线与x轴只有一个公共点,分三种情况:当时,当时,当时,进行分类讨论求出符合题意的a的取值范围.(1)解:当,时,当时,解得:,抛物线与轴的交点坐标,;,解得:或;(2) 线 封 密 内 号学级年名姓 线 封 密 外 解:抛物线恒在x轴下方,解得:,符合条件的整数a只有三个,解得:,的最小值为,(3)解:点A的坐标是(0,1),又当时,抛物线与x轴只有一个公共点,当时,当时,当时,解得:,或者,无解当时,无解
4、,或者,解得:,当时,解得:,此时,令时,则,解得:,符合题意,综合上述可知:a的取值范围为:或或.【考点】此题主要考查的是函数图象与x轴的交点问题,在x的取值范围内,根据交点个数进行分类讨论,从而求出a的取值范围3、 (1),(2)x1,x22(3)x1,x2(4)x14,x25【解析】【分析】 线 封 密 内 号学级年名姓 线 封 密 外 (1)利用公式法解答,即可求解;(2)利用因式分解法解答,即可求解;(3)利用配方法解答,即可求解;(4)利用因式分解法解答,即可求解(1)解: a1,b1,c1b24ac(1)241(1)5x即原方程的根为x1,x2(2)解:移项,得3x(x2)(x2
5、)0,即(3x1)(x2)0,x1,x22(3)解:配方,得(x)21,x1x11,x21(4)解:原方程可化为x29x200,即(x4)(x5)0,x14,x25【考点】本题主要考查了解一元二次方程,熟练掌握一元二次方程的解法是解题的关键4、 (1)(2)【解析】【分析】(1)根据根与系数的关系求得x1+x2、x1x2,然后代入列出方程,通过解方程来求m的值;(2)把点(1,0)代入抛物线解析式,求得m的值(1)解:由题意得:x1+x2=-1,x1x2=-m,-1=-mm=1当m=1时,x2+x-1=0,此时=1+4m=1+4=50,符合题意m=1;(2)解:图象可知:过点(1,0),当x=
6、1,y=0,代入y=x2+x-m,得12+1-m=0m=2【考点】本题主要考查了抛物线与x轴的交点,根与系数的关系,解题的关键是掌握如果x1,x2是一元二次方 线 封 密 内 号学级年名姓 线 封 密 外 程ax2+bx+c=0的两根,那么有x1+x2=-,x1x2=5、k=2【解析】【分析】根据二次函数的定义:一般地,形如y=ax2+bx+c(a、b、c是常数,a0)的函数,叫做二次函数可得k2-3k+4=2,且k-10,再解即可【详解】由题意得:k23k+4=2,且k10,解得:k=2;【考点】此题主要考查了二次函数定义,关键是掌握判断函数是否是二次函数,要抓住二次项系数不为0和自变量指数为2这个关键条件