1、章末归纳整合原命题与它的逆命题、原命题与它的否命题之间的真假是不确定的,而原命题与它的逆否命题(它的逆命题与它的否命题)之间在真假上是始终保持一致的:同真同假一般来说,命题pq的四种形式之间有如下关系:(1)互为逆否的两个命题是等价的(同真同假)因此,证明原命题也可以证明它的逆否命题(2)互逆或互否的两个命题是不等价的专题一 命题及其关系【例1】判断下列命题的真假(1)“若xAB,则xB”的逆命题与逆否命题;(2)“若0 x5,则|x2|3”的否命题与逆否命题;(3)“a,b为非零向量,如果ab,则ab0”的逆命题和否命题解:(1)“若 xAB,则 xB”是假命题,故其逆否命题为假逆命题为“若
2、 xB,则 xAB”,为真命题(2)0 x5,2x23,0|x2|3.原命题为真,故其逆否命题为真否命题:若 x0 或 x5,则|x2|3.例如当 x12,122 52bd,q:ab且cdBp:a1,b1,q:f(x)axb(a0且a1)的图象不过第二象限Cp:x1,q:x2xDp:a1,q:f(x)logax(a0且a1)在(0,)上为增函数【解析】B选项中,当b1,a1时,q推不出p成立,因而p为q的充分不必要条件C选项中,q为x0或1,不能够推出p成立,因而p为q的充分不必要条件D选项中,p,q可以互推,因而p为q的充要条件故选A.【答案】A(2)不等式(2x5)249成立的一个必要不充
3、分条件是()Ax6Bx6或x1C6x1Dx0【答案】D【解析】不等式(2x5)249 的解集为 Mx|x6 或x1由题意,知 M 作为结论,寻求一个必要不充分条件,则看M?,即 M?,由选项可知 M x|x0故选 D.变式训练2.关于x的方程ax22x10(a0)有一个正根和一个负根的充分不必要条件是()Aa0Ca1【答案】C【解析】ax22x10(a0)有一个正根和一个负根的充要条件是1a0 且 44a0,即 a0.而 a0 的一个充分不必要条件是 a1.故选 C.全称命题与特称命题真假的判定及含一个量词的命题的否定是高考的另一个重点,多以客观题为主全称命题的真假判定:要判定一个全称命题为真
4、,必须对限定集合M中每一个x验证p(x)成立,一般用代数推理的方法加以证明要判定一个全称命题为假,只须举出一个反例即可特称命题的真假判定:要判定一个特称命题为真,只要在限定集合M中,能找到一个x0,使p(x0)成立即可否则,这一特称命题为假专题三 全称命题与特称命题【例 3】在下列四个命题中,真命题的个数是()xR,x2x30;x0Q,13x2012x01 不是有理数;0,0R,使 sin(00)sin 0sin 0;x0,y0Z,使 3x02y010.A1B2C3D4【解析】中 x2x3x122114 114 0,故是真命题中 xQ,13x212x1 一定是有理数,故是假命题中 4,4时,s
5、in()0,sin sin 0,故是真命题中 x04,y01 时,3x02y010 成立,故是真命题【答案】C变式训练 3.下列命题中的真命题是()AxR,x20BxR,x1x2Cx0R,sin x0cos x02Dx0R,ln x012 x0【答案】D【解析】对于 A 选项,当 x0 时,x20,A 选项为假命题;对于 B 选项,当 x1 时,x1x2,B 选项为假命题;对于 C 选项,sin xcos x 2sinx4 22,C选项为假命题;对于 D 选项,当 x0e 时,ln e1,12e1,满足条件,D 选项为真命题故选 D.从近几年高考信息统计可以看出,命题是高考的考查热点之一,考查
6、时题型以选择题、填空题为主,重点考查充分条件与必要条件、全称命题与特称命题1(2016年浙江)命题“xR,nN*,使得nx2”的否定形式是()AxR,nN*,使得nx2BxR,nN*,使得nx2CxR,nN*,使得nx2DxR,nN*,使得nx2【答案】D【解析】“”的否定是“”,“”的否定是“”,“nx2”的否定是“nx2”,命题“xR,nN*,使得nx2”的否定形式是“xR,nN*,使得nx2”2(2018 年天津)设 xR,则“x12 12”是“x31”的()A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件【答案】A【解析】x12 120 x1,x31x1,所以“x121
7、2”是“x31”的充分不必要条件故选 A3(2018年北京)设a,b,c,d是非零实数,则“adbc”是“a,b,c,d成等比数列”的()A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件【答案】B【解析】a,b,c,d是非零实数,若a0,d0,b0,c0,且adbc,则a,b,c,d不成等比数列(可以假设a2,d3,b2,c3)若a,b,c,d成等比数列,则由等比数列的性质可知adbc.所以“adbc”是“a,b,c,d成等比数列”的必要不充分条件故选B4(2017年山东)已知命题p:xR,x2x10;命题q:若a2b2,则ab,下列命题为真命题的是()Apq Bp(q)C(p)q D(p)(q)【答案】B【解析】对于命题p,当x0时,x2x10成立,故p为真命题对于命题q,当a1,b2时,a2b2成立,但ab不成立,故q为假命题故命题pq,(p)q,(p)(q)均为假命题;命题p(q)为真命题,故选B