1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版数学八年级上册期中定向测试试题 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、作平分线的作图过程如下:作法:(1)在和上分别截取、,使(2)分别
2、以,为圆心,大于的长为半径作弧,两弧交于点(3)作射线,则就是的平分线用下面的三角形全等的判定解释作图原理,最为恰当的是()ABCD2、观察下列作图痕迹,所作线段为的角平分线的是()ABCD3、如图,三角形纸片ABC,AB=AC,BAC=90,点E为AB中点,沿过点E的直线折叠,使点B与点A重合,折痕现交于点F,已知EF=,则BC的长是()AB3C3D34、如图,1、2、3中是ABC外角的是()A1、2B2、3C1、3D1、2、35、如图,锐角ABC的两条高BD、CE相交于点O,且CEBD,若CBD20,则A的度数为() 线 封 密 内 号学级年名姓 线 封 密 外 A20B40C60D70二
3、、多选题(5小题,每小题4分,共计20分)1、下列长度的各种线段,可以组成三角形的是()A2,3,4B1,1,2C5,5,9D7,5,12、如图,在方格中,以为一边作,使之与全等,则在,四个点中,符合条件的点有()ABCD3、下列不是真命题的是()A如果 ab,ac,那么 bcB相等的角是对顶角C一个角的补角大于这个角D一个三角形中至少有两个锐角4、下列每组中的两个图形,不是全等图形的是()ABCD5、已知等腰三角形的周长是12,且各边长都为整数,则各边的长可能是()A2,2,8B5,5,2C4,4,4D3,3,5第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、用一条宽
4、度相等的足够长的纸条打一个结(如图1所示),然后轻轻拉紧、压平就可以得到如图2所示的正五边形图中,_度2、如图所示,过正五边形的顶点作一条射线与其内角的角平分线相交于点,且,则_度 线 封 密 内 号学级年名姓 线 封 密 外 3、如图,若ABCADE,且135,则2_4、已知三角形的三边长为4、x、11,化简_5、一个多边形的内角和是外角和的2倍,则这个多边形的边数为_四、解答题(5小题,每小题8分,共计40分)1、如图,点C、F在线段BE上,ABCDEF90,BCEF,请只添加一个合适的条件使ABCDEF(1)根据“ASA”,需添加的条件是;根据“HL”,需添加的条件是;(2)请从(1)中
5、选择一种,加以证明2、如图,在中,点D为上一点,将沿翻折得到,与相交于点F,若平分,(1)求证:;(2)求的度数3、如图,CE,ACAE,点D在BC边上,12,AC和DE相交于点O求证:ABCADE4、如图,在中,D是边上的点,垂足分别为E,F,且求证:5、如图,A,B,C,D依次在同一条直线上,BF与EC相交于点M求证: 线 封 密 内 号学级年名姓 线 封 密 外 -参考答案-一、单选题1、A【解析】【分析】根据作图过程可得OD=OE,CE=CD,根据OC为公共边,利用SSS即可证明OCEOCD,即可得答案【详解】分别以,为圆心,大于的长为半径作弧,两弧交于点;CE=CD,在OCE和OCD
6、中,OCEOCD(SSS),故选:A【考点】本题考查全等三角形的判定,正确找出相等的线段并熟练掌握全等三角形的判定定理是解题关键2、C【解析】【分析】根据角平分线画法逐一进行判断即可【详解】:所作线段为AB边上的高,选项错误;B:做图痕迹为AB边上的中垂线,CD为AB边上的中线,选项错误;C:CD为的角平分线,满足题意。D:所作线段为AB边上的高,选项错误故选:.【考点】本题考查点到直线距离的画法,角平分线的画法,中垂线的画法,能够区别彼此之间的不同是解题切入点3、B【解析】【分析】折叠的性质主要有:1.重叠部分全等;2.折痕是对称轴,对称点的连线被对称轴垂直平分. 由折叠的性质可知,所以可求
7、出AFB=90,再直角三角形的性质可知,所以,的长可求,再利用勾股定理即可求出BC的长【详解】解: 线 封 密 内 号学级年名姓 线 封 密 外 ABAC,,故选B.【考点】本题考查了折叠的性质、等腰直角三角形的判断和性质以及勾股定理的运用,求出AFB=90是解题的关键4、C【解析】【分析】根据三角形外角的定义进行分析即可得到答案.【详解】解:属于ABC外角的有1、3共2个故选C【考点】本题考查三角形外角的定义,解题的关键是掌握三角形的定义.5、B【解析】【分析】由BD、CE是高,可得BDC=CEB=90,可求BCD70,可证RtBECRtCDB(HL),得出BCDCBE70即可【详解】解:B
8、D、CE是高,CBD20,BDC=CEB=90,BCD180902070,在RtBEC和RtCDB中,RtBECRtCDB(HL),BCDCBE70,A180707040故选:B【考点】本题考查三角形高的定义,三角形全等判定与性质,三角形内角和公式,掌握三角形高的定义,三角形全等判定与性质,三角形内角和公式是解题关键二、多选题1、AC【解析】【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析【详解】解:A、 ,能构成三角形,符合题意;B、1+1=2,不能构成三角形,不符合题意; 线 封 密 内 号学级年名姓 线 封 密 外 C、,能构成三角形,符合题意;D
9、、5+17,不能构成三角形,不符合题意故选AC【考点】此题主要考查了三角形三边关系,根据第三边的范围是:大于已知的两边的差,而小于两边的和是解决问题的关键2、ACD【解析】【分析】根据全等三角形的对应边相等判断即可【详解】解:要使ABP与ABC全等,点P到AB的距离应该等于点C到AB的距离,即3个单位长度,故点P的位置可以是P1,P3,P4三个,故选:ACD【考点】此题考查全等三角形的性质,掌握全等三角形的对应边相等是解题的关键3、ABC【解析】【分析】根据不等式的性质、对顶角的性质、三角形和补角的性质进行判断即可【详解】解:A、如果 ab,ac,不能判断b,c的大小,原命题是假命题;B、相等
10、的角不一定是对顶角,原命题是假命题;C、一个角的补角不一定大于这个角,原命题是假命题;D、一个三角形中至少有两个锐角,原命题是真命题;故选:ABC【考点】本题考查了命题与定理的知识,解题的关键是了解不等式的性质、对顶角的性质、三角形和补角的性质,属于基础知识,难度不大4、ABD【解析】【分析】根据全等形的定义:能够完全重合的两个图形是全等图形,据此可得正确答案【详解】解:A、大小不同,不能重合,不是全等图形,符合题意;B、大小不同,不能重合,不是全等图形,符合题意;C、大小相同,形状相同,是全等图形,不符合题意;D、正五边形和正六边形不是全等图形,符合题意;故选:ABD【考点】本题考查了全等图
11、形的识别,熟知全等图形的定义是解本题的关键5、BC【解析】【分析】根据三角形三边之间的关系:两边之和大于第三边,两边之差小于第三边结合题目条件“周长为12”,可得出正确答案 线 封 密 内 号学级年名姓 线 封 密 外 【详解】A.2+22,5-54,4-45,3-35;但3+3+512;排除故选:BC【考点】本题主要考查了能够组成三角形三边之间的关系:两边之和大于大三边,两边之差小于第三边;注意结合题目条件“周长为12”三、填空题1、36【解析】【分析】利用多边形的内角和定理和等腰三角形的性质即可解决问题【详解】解:,是等腰三角形,度,故答案为:36【考点】本题主要考查了多边形的内角和定理和
12、等腰三角形的性质 解题关键在于知道n边形的内角和为:180(n2)2、66【解析】【分析】首先根据正五边形的性质得到度,然后根据角平分线的定义得到度,再利用三角形内角和定理得到的度数【详解】解:五边形为正五边形,度,是的角平分线,度,故答案为66【考点】本题考查了多边形内角与外角,题目中还用到了角平分线的定义及三角形内角和定理3、35【解析】【分析】根据全等的性质可得:EADCAB,再根据等式的基本性质可得1235.【详解】解:ABCADE,EADCAB,EADCADCABCAD,2135故答案为35 线 封 密 内 号学级年名姓 线 封 密 外 【考点】此题考查的是全等三角形的性质,掌握全等
13、三角形的对应角相等是解决此题的关键.4、11【解析】【分析】根据三角形三边关系可求出x的取值范围,即可求解【详解】三角形的三边为4、x、11,11-4x11+4,故答案为:11【考点】本题主要考查了构成三角形三边大小的关系和去绝对值的知识,利用三角形三边关系求出x的取值范围是解答本题的关键5、6【解析】【分析】利用多边形的外角和以及多边形的内角和定理即可解决问题【详解】解:多边形的外角和是360度,多边形的内角和是外角和的2倍,内角和是720度,这个多边形是六边形四、解答题1、(1)ACBDFE,ACDF;(2)选择添加条件ACDE,证明见解析【解析】【分析】(1)根据题意添加条件即可;(2)
14、选择添加条件ACDE,根据“HL”证明即可【详解】(1)根据“ASA”,需添加的条件是ACBDFE,根据“HL”,需添加的条件是ACDF,故答案为:ACBDFE,ACDF;(2)选择添加条件ACDE证明,证明:ABCDEF90,在RtABC和RtDEF中,RtABCRtDEF(HL)【考点】本题考查了全等三角形的判定,熟知全等三角形的判定定理是解题关键,证明三角形全等时注意条件的对应2、 (1)证明见解析;(2)【解析】 线 封 密 内 号学级年名姓 线 封 密 外 【分析】(1)利用三角形内角和定理求出,再利用折叠和角平分线的性质证明,即可证明;(2)利用三角形内角和定理求出,再利用对顶角相
15、等证明,再利用三角形内角和定理即可求出(1)证明:,,AE平分,(2)解:,且,【考点】本题考查三角形内角和定理,折叠的性质,角平分线的性质,对顶角相等,(1)的关键是求出,证明;(2)的关键是求出3、见解析【解析】【分析】先利用三角形外角性质证明ADE=B,然后根据“AAS”判断ABCADE【详解】ADC1+B, 即ADE+21+B,而12, ADEB,在ABC和ADE中, ABCADE(AAS)【考点】本题考查了全等三角形的判定:熟练掌握全等三角形的5种判定方法选用哪一种方法,取决于题目中的已知条件4、见解析【解析】【分析】由得出,由SAS证明,得出对应角相等即可【详解】证明:, 线 封 密 内 号学级年名姓 线 封 密 外 在和中,【考点】本小题考查垂线的性质、全等三角形的判定与性质、等基础知识,考查推理能力、空间观念与几何直观5、见解析【解析】【分析】由AB=CD,得AC=BD,再利用SAS证明AECDFB,即可得结论【详解】证明:,在和中,【考点】本题主要考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键