收藏 分享(赏)

2022年强化训练人教版九年级数学上册期末综合练习试题 (A)卷(含详解).docx

上传人:a**** 文档编号:702382 上传时间:2025-12-13 格式:DOCX 页数:25 大小:643.29KB
下载 相关 举报
2022年强化训练人教版九年级数学上册期末综合练习试题 (A)卷(含详解).docx_第1页
第1页 / 共25页
2022年强化训练人教版九年级数学上册期末综合练习试题 (A)卷(含详解).docx_第2页
第2页 / 共25页
2022年强化训练人教版九年级数学上册期末综合练习试题 (A)卷(含详解).docx_第3页
第3页 / 共25页
2022年强化训练人教版九年级数学上册期末综合练习试题 (A)卷(含详解).docx_第4页
第4页 / 共25页
2022年强化训练人教版九年级数学上册期末综合练习试题 (A)卷(含详解).docx_第5页
第5页 / 共25页
2022年强化训练人教版九年级数学上册期末综合练习试题 (A)卷(含详解).docx_第6页
第6页 / 共25页
2022年强化训练人教版九年级数学上册期末综合练习试题 (A)卷(含详解).docx_第7页
第7页 / 共25页
2022年强化训练人教版九年级数学上册期末综合练习试题 (A)卷(含详解).docx_第8页
第8页 / 共25页
2022年强化训练人教版九年级数学上册期末综合练习试题 (A)卷(含详解).docx_第9页
第9页 / 共25页
2022年强化训练人教版九年级数学上册期末综合练习试题 (A)卷(含详解).docx_第10页
第10页 / 共25页
2022年强化训练人教版九年级数学上册期末综合练习试题 (A)卷(含详解).docx_第11页
第11页 / 共25页
2022年强化训练人教版九年级数学上册期末综合练习试题 (A)卷(含详解).docx_第12页
第12页 / 共25页
2022年强化训练人教版九年级数学上册期末综合练习试题 (A)卷(含详解).docx_第13页
第13页 / 共25页
2022年强化训练人教版九年级数学上册期末综合练习试题 (A)卷(含详解).docx_第14页
第14页 / 共25页
2022年强化训练人教版九年级数学上册期末综合练习试题 (A)卷(含详解).docx_第15页
第15页 / 共25页
2022年强化训练人教版九年级数学上册期末综合练习试题 (A)卷(含详解).docx_第16页
第16页 / 共25页
2022年强化训练人教版九年级数学上册期末综合练习试题 (A)卷(含详解).docx_第17页
第17页 / 共25页
2022年强化训练人教版九年级数学上册期末综合练习试题 (A)卷(含详解).docx_第18页
第18页 / 共25页
2022年强化训练人教版九年级数学上册期末综合练习试题 (A)卷(含详解).docx_第19页
第19页 / 共25页
2022年强化训练人教版九年级数学上册期末综合练习试题 (A)卷(含详解).docx_第20页
第20页 / 共25页
2022年强化训练人教版九年级数学上册期末综合练习试题 (A)卷(含详解).docx_第21页
第21页 / 共25页
2022年强化训练人教版九年级数学上册期末综合练习试题 (A)卷(含详解).docx_第22页
第22页 / 共25页
2022年强化训练人教版九年级数学上册期末综合练习试题 (A)卷(含详解).docx_第23页
第23页 / 共25页
2022年强化训练人教版九年级数学上册期末综合练习试题 (A)卷(含详解).docx_第24页
第24页 / 共25页
2022年强化训练人教版九年级数学上册期末综合练习试题 (A)卷(含详解).docx_第25页
第25页 / 共25页
亲,该文档总共25页,全部预览完了,如果喜欢就下载吧!
资源描述

1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版九年级数学上册期末综合练习试题 (A)卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、如图,在方格纸上建立的平面直角坐标系中,将绕点按顺时针方向旋转9

2、0,得到,则点的坐标为()ABCD2、如图,G是正方形ABCD内一点,以GC为边长,作正方形GCEF,连接BG和DE,试用旋转的思想说明线段BG与DE的关系()ADEBGBDEBGCDEBGDDEBG3、用配方法解方程时,原方程应变形为()ABCD4、二次函数 的图像如图所示, 现有以下结论: (1) : (2) ; (3), (4) ; (5) ; 其中正确的结论有()A2 个B3 个C4 个D5 个5、二次函数的图象如图所示,对称轴是直线下列结论:;(为实数)其中结论正确的个数为() 线 封 密 内 号学级年名姓 线 封 密 外 A1个B2个C3个D4个二、多选题(5小题,每小题4分,共计

3、20分)1、已知关于的方程,下列说法不正确的是()A当时,方程无解B当时,方程有两个相等的实数根C当时,方程有两个相等的实数根D当时,方程有两个不相等的实数根2、下列方程中,关于x的一元二次方程有()Ax2=0Bax2+bx+c=0Cx23=xDa2+ax=0E(m1)x2+4x+=0FG=2H(x+1)2=x293、对于二次函数,下列说法不正确的是()A图像开口向下B图像的对称轴是直线C函数最大值为0D随的增大而增大4、下列各组图形中,由左边变成右边的图形,分别进行了平移、旋转、轴对称、中心对称等变换,其中进行了旋转变换的是()组,进行轴对称变换的是()ABCD5、下列方程一定不是一元二次方

4、程的是()ABCD第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、菱形的一条对角线长为8,其边长是方程x28x150的一个根,则该菱形的面积为_2、将二次函数化成一般形式,其中二次项系数为_,一次项系数为_,常数项为_3、如果关于的一元二次方程的一个解是,那么代数式的值是_4、如图,在甲,以点为圆心,的长为半径作圆,交于点,交于点,阴影部分的面积为_(结果保留)5、如图,是等边三角形,点D为BC边上一点,以点D为顶点作正方形DEFG,且,连接AE,AG若将正方形DEFG绕点D旋转一周,当AE取最小值时,AG的长为_ 线 封 密 内 号学级年名姓 线 封 密 外 四、解答

5、题(5小题,每小题8分,共计40分)1、已知关于的二次函数(1)求证:不论为何实数,该二次函数的图象与轴总有两个公共点;(2)若,两点在该二次函数的图象上,直接写出与的大小关系;(3)若将抛物线沿轴翻折得到新抛物线,当时,新抛物线对应的函数有最小值3,求的值2、已知关于x的方程x2+(m2)x2m0(1)求证:不论m取何值,此方程总有实数根;(2)若m为整数,且方程的一个根小于2,请写出一个满足条件的m的值3、如图,二次函数的图象交轴于、两点,交轴于点,点的坐标为,顶点的坐标为求二次函数的解析式和直线的解析式;点是直线上的一个动点,过点作轴的垂线,交抛物线于点,当点在第一象限时,求线段长度的最

6、大值;在抛物线上是否存在异于、的点,使中边上的高为?若存在求出点的坐标;若不存在请说明理由4、某网店销售一款市场上畅销的蒸蛋器,进价为每个40元,在销售过程中发现,这款蒸蛋器销售单价为60元时,每星期卖出100个如果调整销售单价,每涨价1元,每星期少卖出2个,现网店决定提价销售,设销售单价为x元,每星期销售量为y个(1)请直接写出y(个)与x(元)之间的函数关系式;(2)当销售单价是多少元时,该网店每星期的销售利润是2400元?(3)当销售单价是多少元时,该网店每星期的销售利润最大?最大利润是多少元?5、如图,两个圆都以点O为圆心,大圆的弦交小圆于两点求证: -参考答案-一、单选题1、A【解析

7、】【分析】根据网格结构作出旋转后的图形,然后根据平面直角坐标系写出点B的坐标即可【详解】ABO如图所示,点B(2,1)故选A 线 封 密 内 号学级年名姓 线 封 密 外 【考点】本题考查了坐标与图形变化,熟练掌握网格结构,作出图形是解题的关键2、A【解析】【分析】根据四边形ABCD为正方形,得出BC=DC,BCD=90,根据四边形CEFG为正方形,得出GC=EC,GCE=90,再证BCG=DCE,BCG与DCE具有可旋转的特征即可【详解】解:四边形ABCD为正方形,BC=DC,BCD=90,四边形CEFG为正方形,GC=EC,GCE=90,BCG+GCD=GCD+DCE=90,BCG=DCE

8、,BCG绕点C顺时针方向旋转90得到DCE,BG=DE,故选项A【考点】本题考查图形旋转特征,正方形性质,三角形全等条件,同角的余角性质,掌握图形旋转特征,正方形性质,三角形全等条件是解题关键3、D【解析】【分析】移项,配方,变形后即可得出选项【详解】解:x2-4x=1,x2-4x+4=1+4,(x-2)2=5,故选:D【考点】本题考查了解一元二次方程,能够正确配方是解此题的关键4、C【解析】【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断【详解】解:(1)函数开口向下,a0,对称轴在y轴的右

9、边,b0,故命题正确;(2)a0,b0,c0,abc0,故命题正确;(3)当x=-1时,y0,a-b+c0,故命题错误;(4)当x=1时,y0,a+b+c0,故命题正确; 线 封 密 内 号学级年名姓 线 封 密 外 (5)抛物线与x轴于两个交点,b2-4ac0,故命题正确;故选C【考点】本题考查了二次函数图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用5、C【解析】【分析】由抛物线开口方向得到,对称轴在轴右侧,得到与异号,又抛物线与轴正半轴相交,得到,可得出,选项错误;把代入中得,所以正确;由时对应的函数值,可得出,得到,由

10、,得到,选项正确;由对称轴为直线,即时,有最小值,可得结论,即可得到正确【详解】解:抛物线开口向上,抛物线的对称轴在轴右侧,抛物线与轴交于负半轴,错误;当时,把代入中得,所以正确;当时,即,所以正确;抛物线的对称轴为直线,时,函数的最小值为,即,所以正确故选C【考点】本题考查了二次函数图象与系数的关系:二次项系数决定抛物线的开口方向和大小当时,抛物线向上开口;当时,抛物线向下开口;一次项系数和二次项系数共同决定对称轴的位置:当与同号时,对称轴在轴左;当与异号时,对称轴在轴右常数项决定抛物线与轴交点:抛物线与轴交于抛物线与轴交点个数由判别式确定:时,抛物线与轴有2个交点;时,抛物线与轴有1个交点

11、;时,抛物线与轴没有交点二、多选题1、ABD【解析】【分析】利用k的值,分别代入求出方程的根的情况即可【详解】关于的方程, 线 封 密 内 号学级年名姓 线 封 密 外 A当k= 0时,x- 1=0,则x=1,故此选项错误,符合题意;B当k = 1时,- 1 = 0,x=1,方程有两个不相等的实数解,故此选项错误,符合题意;C当k=-1时,则,此时方程有两个相等的实数根,故此选项正确,不符合题意;D当时,根据A选项,若k= 0,此时方程有一个实数根,故此选项错误,符合题意,故选:ABD【考点】此题主要考查了一元二次方程的解,代入k的值判断方程根的情况是解题关键2、AC【解析】【分析】根据一元二

12、次方程的定义逐个判断即可【详解】解:A.x2=0 ,C.x23=x 符合一元二次方程的定义;B.ax2+bx+c=0中,当a=0时,不是一元二次方程;D.a2+a-x=0是关于x的一元一次方程;E.(m1)x2+4x+=0,当m=1时为关于x的一元一次方程;F.+ =分母中含有字母,是分式方程;G.=2是无理方程;H.(x+1)2=x2-9展开后为x2+2x+1=x2-9,即2x+1=-9是一元一次方程故选AC【考点】本题考查了一元二次方程的定义,一元二次方程具有以下三个特点:(1)只含有一个未知数;(2)未知数的最高次数是2;(3)是整式方程3、ACD【解析】【分析】根据题目中的函数解析式,

13、可以判断各个选项中的说法是否正确【详解】解:二次函数,a20,该函数的图象开口向上,故选项A错误,图象的对称轴是直线x1,故选项B正确,函数的最小值是y0,故选项C错误,当x1时随的增大而增大,故选项D错误,故选:A,C,D【考点】本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答4、AC【解析】【分析】旋转是一个图形绕着一个定点旋转一定的角度,各对应点之间的位置关系也保持不变;在平面内,如果一个图形沿一条直线对折,对折后的两部分都能完全重合,这样的图形叫做轴对称图形,这条直线就是其对称轴据此即可解答【详解】由旋转是一个图形绕着一个定点旋转一定的角度,各对

14、应点之间的位置关系也保持不变,分析可得,进行旋转变换的是A;左边图形能轴对称变换得到右边图形,则进行轴对称变换的是C;根据平移是将一个图形从一个位置变换到另一个位置,各对应点间的连线平行,分析可得,D是平移变化; 线 封 密 内 号学级年名姓 线 封 密 外 故答案为:A;C【考点】本题考查了几何变换的定义,注意结合几何变换的定义,分析图形的位置的关系,特别是对应点之间的关系5、AB【解析】【分析】根据只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程进行分析即可【详解】解:A、分母含有未知数,一定不是一元二次方程,故本选项符合题意;B、含有两个未知数,一定不是一元二次方程,故

15、本选项符合题意;C、当a=0 时,不是一元二次方程,当a0时,是一元二次方程,故本选项不符合题意;D、是一元二次方程,故本选项不符合题意故选:AB【考点】本题考查的是一元二次方程的定义,熟知只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程是解答此题的关键三、填空题1、24【解析】【分析】利用因式分解法解方程得到x1=3,x2=5,再根据菱形的性质得到菱形的边长为5,利用勾股定理计算出菱形的另一条对角线长,然后根据菱形的面积公式计算【详解】解:x2-8x+15=0,(x-3)(x-5)=0,x-3=0或x-5=0,x1=3,x2=5,菱形一条对角线长为8,菱形的边长为5,菱形的

16、另一条对角线长=2=6,菱形的面积=68=24故答案为:24【考点】本题考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法也考查了菱形的性质2、 【解析】【分析】通过去括号,移项,可以把方程化成二次函数的一般形式,然后确定二次项系数,一次项系数,常数项【详解】y=2(x2)2变形为:y=2x2+8x8,所以二次项系数为2;一次项系数为8;常数项为8故答案为2,8,8【考点】 线 封 密 内 号学级年名姓 线 封 密 外 本题考查的是二次函数的一般形式,通过去括号,移项,合并同类项,得到二次函数的一般形式,确定二次项系数

17、,一次项系数,常数项的值3、【解析】【分析】根据关于的一元二次方程的一个解是,可以得到的值,然后将所求式子变形,再将的值代入,即可解答本题【详解】解:关于的一元二次方程的一个解是,故答案为:2020【考点】本题考查一元二次方程的解,解答本题的关键是明确一元二次方程的解的含义4、【解析】【分析】连接BE,根据正切的定义求出A,根据扇形面积公式、三角形的面积公式计算即可【详解】解:连接BE, 在RtABC中,ABC90,tanA,A60,BABE,ABE为等边三角形,ABE30,EBC30,阴影部分的面积22故答案为【考点】本题考查的是扇形面积计算、等边三角形的判定和性质,掌握扇形面积公式是解题的

18、关键5、8【解析】【分析】过点A作于M,由已知得出,得出,由等边三角形的性质得出,得出,在中,由勾股定理得出,当正方形DEFG绕点D旋转到点E、A、D在同一条直线上时,即此时AE取最小值,在中,由勾股定理得出,在中,由勾股定理即可得出 线 封 密 内 号学级年名姓 线 封 密 外 【详解】过点A作于M,是等边三角形,在中,当正方形DEFG绕点D旋转到点E、A、D在同一条直线上时,即此时AE取最小值,在中,在中,;故答案为8【考点】本题考查了旋转的性质、正方形的性质、等边三角形的性质、勾股定理以及最小值问题;熟练掌握正方形的性质和等边三角形的性质是解题的关键四、解答题1、 (1)见解析(2)(3

19、)的值为1或-5【解析】【分析】()计算判别式的值,得到,即可判定;()计算二次函数的对称轴为:直线,利用当抛物线开口向上时,谁离对称轴远谁大判断即可;()先得到抛物线沿y轴翻折后的函数关系式,再利用对称轴与取值范围的位置分类讨论即可(1)证明:令,则不论为何实数,方程有两个不相等的实数根无论为何实数,该二次函数的图象与轴总有两个公共点(2)解:二次函数的对称轴为:直线,抛物线开口向上抛物线上的点离对称轴越远对应的函数值越大 线 封 密 内 号学级年名姓 线 封 密 外 点到对称轴的距离为:1点到对称轴的距离为:2(3)解:抛物线沿轴翻折后的函数解析式为该抛物线的对称轴为直线若,即,则当时,有

20、最小值解得,若,即,则当时,有最小值-1不合题意,舍去若,则当时,有最小值解得,综上,的值为1或-5【考点】本题考查了抛物线与x轴的交点以及二次函数的最值问题,利用一元二次方程根的判别式判断抛物线与x轴的交点情况;熟练掌握二次函数的最值情况、根据对称轴与取值范围的位置关系来确定二次函数的最值是解本题的关键2、 (1)证明见解析(2)1(答案不唯一)【解析】【分析】(1)由题意知,判断其与0的关系,即可得出结论;(2)表示出方程的两根,根据要求进行求解即可(1)证明:由题意知(m+2)20,0,关于x的方程x2+(m2)x2m0总有实数根;(2)解:由(1)知,(m+2)2,x,方程有一根小于2

21、, 线 封 密 内 号学级年名姓 线 封 密 外 m2,m2,m为整数,满足条件的m的一个值为1【考点】本题考查了一元二次方程的根解题的关键在于利用判根公式确定方程根的个数,利用公式求方程的根3、1y=-x2+2x+3,y=-x+3; 有最大值; 存在满足条件的点,其坐标为或【解析】【分析】可设抛物线解析式为顶点式,由点坐标可求得抛物线的解析式,则可求得点坐标,利用待定系数法可求得直线解析式;设出点坐标,从而可表示出的长度,利用二次函数的性质可求得其最大值;过作轴,交于点,过和于,可设出点坐标,表示出的长度,由条件可证得为等腰直角三角形,则可得到关于点坐标的方程,可求得点坐标【详解】解:抛物线

22、的顶点的坐标为,可设抛物线解析式为,点在该抛物线的图象上,解得,抛物线解析式为,即,点在轴上,令可得,点坐标为,可设直线解析式为,把点坐标代入可得,解得,直线解析式为;设点横坐标为,则,当时,有最大值;如图,过作轴交于点,交轴于点,作于,设,则,是等腰直角三角形, 线 封 密 内 号学级年名姓 线 封 密 外 ,当中边上的高为时,即,当时,方程无实数根,当时,解得或,或,综上可知存在满足条件的点,其坐标为或【考点】本题为二次函数的综合应用,涉及待定系数法、二次函数的性质、等腰直角三角形的性质及方程思想等知识在中主要是待定系数法的考查,注意抛物线顶点式的应用,在中用点坐标表示出的长是解题的关键,

23、在中构造等腰直角三角形求得的长是解题的关键本题考查知识点较多,综合性较强,难度适中4、(1)y=-2x+220;(2)当销售单价是70元或80元时,该网店每星期的销售利润是2400元;(3)当销售单价是75元时,该网店每星期的销售利润最大,最大利润是2450元【解析】【分析】(1)根据题意中销售量y(个)与售价x(元)之间的关系即可得到结论;(2)根据题意列出方程(-2x+220)(x-40)=2400,解方程即可求解;(3)设每星期利润为w元,构建二次函数模型,利用二次函数性质即可解决问题【详解】(1)由题意可得,y=100-2(x-60)=-2x+220;(2)由题意可得,(-2x+220

24、)(x-40)=2400,解得,当销售单价是70元或80元时,该网店每星期的销售利润是2400元答:当销售单价是70元或80元时,该网店每星期的销售利润是2400元(3)设该网店每星期的销售利润为w元,由题意可得w=(-2x+220)(x-40)=,当时,w有最大值,最大值为2450,当销售单价是75元时,该网店每星期的销售利润最大,最大利润是2450元答:当销售单价是75元时,该网店每星期的销售利润最大,最大利润是2450元【考点】本题考查了二次函数的应用,解题的关键是构建二次函数模型,利用二次函数的性质解决最值问题5、见解析【解析】【分析】过点O作OPAB,由等腰三角形的性质可知AP=BP,再由垂径定理可知CP=DP,故可得出结论【详解】证明:如图所示,过点O作OPAB,垂足为点P, 线 封 密 内 号学级年名姓 线 封 密 外 由垂径定理可得PAPB,PCPD,PAPCPBPD,ACBD【考点】本题考查的是垂径定理,根据题意作出辅助线,利用垂径定理求解是解答此题的关键

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 语文

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1