1、京改版八年级数学上册期末综合测评试题 (B)卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、下列命题的逆命题一定成立的是()对顶角相等;同位角相等,两直线平行;全等三角形的周长相等;能够完全重合的两个三角
2、形全等ABCD2、如图,在ABC中,ABC90,AB3,BC1,AB在数轴上,以点A为圆心,AC长为半径作弧,交数轴的正半轴于点M,则M表示的数为()A2.1B1CD13、若a、b为实数,且,则直线yaxb不经过的象限是()A第一象限B第二象限C第三象限D第四象限4、将一副直角三角板按如图所示的位置摆放,使得它们的直角边互相垂直,则的度数是()ABCD5、把四张形状大小完全相同的小长方形卡片(如图,卡片的长为,宽为)不重叠地放在一个底面为长方形(长为,宽为4)的盒子底部(如图),盒子底面未被卡片覆盖的部分用阴影表示,则图中两块阴影部分的周长和是()ABCD二、多选题(5小题,每小题4分,共计2
3、0分)1、下列二次根式化成最简二次根式后,与被开方数相同的是()ABCD2、下列命题中正确的是()A有两个角和第三个角的平分线对应相等的两个三角形全等;B有两条边和第三条边上的中线对应相等的两个三角形全等;C有两条边和第三条边上的高对应相等的两个三角形全等D有两条边和一个角对应相等的两个三角形全等3、如图,小明在学了尺规作图后,作了一个图形,其作图步骤是:作线段,分别以点、为圆心,以长为半径画弧,两弧相交于点、;连接、,作直线,且与相交于点则下列说法正确的是()A是等边三角形BCD4、观察图中尺规作图痕迹,下列结论正确的是()APQ为APB的平分线BPA=PBC点A、B到PQ的距离不相等DAP
4、Q=BPQ5、下列实数中无理数有()AB0CDEFGH0.020020002第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、若的整数部分是,小数部分是,则_2、如图,E为ABC的BC边上一点,点D在BA的延长线上,DE交AC于点F,B46,C30,EFC70,则D_3、式子有意义的条件是_4、我国元代数学家朱世杰的著作四元玉鉴中记载“买椽多少”问题:“六贯二百一十钱,请人去买几株椽,每株脚钱三文足,无钱准与一株椽”其大意为:用6210文钱请人代买一批椽如果每株椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?设这批椽的数量
5、为x株,则符合题意的方程是_5、若关于x的方程无解,则m的值为_四、解答题(5小题,每小题8分,共计40分)1、计算题(1);(2);(3)2、观察下列等式:解答下列问题:(1)写出一个无理数,使它与的积为有理数;(2)利用你观察的规律,化简;(3)计算:3、如图,点E在BC上,且,(1)求证:;(2)判断AC和BD的位置关系,并说明理由4、如图,在ABC中,点D为ABC的平分线BD上一点,连接AD,过点D作EFBC交AB于点E,交AC于点F(1)如图1,若ADBD于点D,BEF=120,求BAD的度数;(2)如图2,若ABC=,BDA=,求FAD十C的度数(用含和的代数式表示)5、先观察下列
6、等式,再回答问题:;(1)根据上面三个等式,请猜想的结果(直接写出结果)(2)根据上述规律,解答问题:设,求不超过的最大整数是多少?-参考答案-一、单选题1、C【解析】【分析】求出各命题的逆命题,然后判断真假即可【详解】解:对顶角相等,逆命题为:相等的角为对顶角,是假命题不符合题意;同位角相等,两直线平行,逆命题为:两直线平行,同位角相等,是真命题,符合题意;全等三角形的周长相等. 逆命题为:周长相等的两个三角形全等,是假命题,不符合题意;能够完全重合的两个三角形全等. 逆命题为:两个全等三角形能够完全重合,是真命题,符合题意;故逆命题成立的是,故选C【考点】本题主要考查命题与定理,熟悉掌握逆
7、命题的求法是解本题的关键2、B【解析】【分析】先根据勾股定理求出AB的长,进而可而出结论【详解】ABC中,B=90,AB=3,BC=1,AC=A点表示1,M点表示1故选:B【考点】本题考查勾股定理及实数与数轴,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键3、D【解析】【分析】依据即可得到 进而得到直线不经过的象限是第四象限【详解】解: 解得, ,直线不经过的象限是第四象限故选D【考点】本题主要考查了一次函数的性质,解决问题的关键是掌握二次根式中被开方数的取值范围:二次根式中的被开方数是非负数4、C【解析】【分析】根据题意求出、,根据对顶角的性质、三角形
8、的外角性质计算即可【详解】由题意得,由三角形的外角性质可知,故选C【考点】本题考查的是三角形的外角性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键5、B【解析】【分析】分别求出较大阴影的周长和较小阴影的周长,再相加整理,即得出答案【详解】较大阴影的周长为:,较小阴影的周长为:,两块阴影部分的周长和为:= , 故两块阴影部分的周长和为16故选B【考点】本题考查了图形周长,整式加减的应用,利用数形结合的思想求出较大阴影的周长和较小阴影的周长是解题的关键二、多选题1、BD【解析】【分析】由题意根据二次根式的性质把各个二次根式化简,进而根据同类二次根式的概念判断即可【详解】解:A、,
9、与的被开方数不相同,故不符合题意;B、,与的被开方数相同,故符合题意;C、,与的被开方数不相同,故不符合题意;D、,与的被开方数相同,故符合题意;故选BD【考点】本题考查的是同类二次根式,熟练掌握同类二次根式的概念以及二次根式的性质是解题的关键2、AB【解析】【分析】结合已知条件和全等三角形的判定方法,对所给的四个命题依次判定,即可解答【详解】A、正确可以用AAS判定两个三角形全等;如图:BB,CC,AD平分BAC,AD平分BAC,且ADAD, BB,CC,BACBAC,AD,AD分别平分BAC,BAC,BADBAD ,ABDABD(AAS),ABAB,在ABC和ABC中, ,ABCABC(A
10、AS)B、正确可以用“倍长中线法”,用SAS定理,判断两个三角形全等,如图, , , ,AD,AD分别为、 的中线,分别延长AD,AD到E,E,使得AD=DE,AD=DE, ,ADCEDB,BE=AC,同理:BE=AC,BE=BE,AE=AE,ABEABE,BAE=BAE,E=E,CAD=CAD,BAC=BAC, , ,BACBACC、不正确因为这个高可能在三角形的内部,也有可能在三角形的外部,也就是说,这两个三角形可能一个是锐角三角形,一个是钝角三角形,所以就不全等D、不正确,必须是两边及其夹角分别对应相等的两个三角形全等故选:AB【考点】本题考查了全等三角形的判定方法,要根据选项提供的已知
11、条件逐个分析,看是否符合全等三角形的判定方法,注意SSA是不能判定两三角形全等的3、ABC【解析】【分析】根据等边三角形的判定和性质,线段垂直平分线的性质一一判断即可【详解】解:由作图可知:AB=BC=AC,ABC是等边三角形,故A选项正确等边三角形三线合一,由作图知,CD是线段AB的垂直平分线,故B选项正确,故C选项正确,D选项错误故选:ABC【考点】此题考查了作图-基本作图,等边三角形的判定和性质,线段垂直平分线的性质,解题的关键是理解题意,灵活运用所学知识解决问题4、ABD【解析】【分析】根据图形的画法得出PQ是APB的角平分线,再根据尺规作图的画法结合等腰三角形的性质逐项分析四个选项即
12、可得出结论【详解】解:根据尺规作图的画法可知:PQ是APB的角平分线A、PQ是APB的平分线,原选项正确;B、根据角平分线的作法得PA=PB,原选项正确;C、PA=PB,PQ是APB的平分线,PQAB,PQ平分AB,点A、B到PQ的距离相等,原选项错误;D、PQ是APB的平分线,APQ=BPQ,原选项正确故选:ABD【考点】本题考查了尺规作图中的作角的平分线以及等腰三角形的性质,本题属于基础题,难度不大,牢记尺规作图的方法和步骤是关键5、EGH【解析】【分析】根据无理数的定义,无限不循环小数是无理数,即可求解【详解】解:,0,是有理数;,0.020020002,是无理数,故选:EGH【考点】本
13、题主要考查了无理数的定义,熟练掌握无限不循环小数是无理数是解题的关键三、填空题1、【解析】【分析】先确定出的范围,即可推出a、b的值,把a、b的值代入求出即可【详解】解:,故答案为:【考点】考查了估算无理数的大,解此题的关键是确定的范围89,得出a,b的值2、34#34度【解析】【分析】根据题意先求DAC,再依据ADF三角形内角和180可得答案【详解】解:B=46,C=30,DAC=B+C=76,EFC=70,AFD=70,D=180-DAC-AFD=34,故答案为:34【考点】本题考查三角形内角和定理及三角形一个外角等于不相邻的两个内角的和,解题的关键是掌握三角形内角和定理3、且【解析】【分
14、析】式子有意义,则x-20,x-30,解出x的范围即可.【详解】解:式子有意义,则x-20,x-30,解得:,故答案为且.【考点】此题考查二次根式及分式有意义,熟练掌握二次根式的被开方数大于等于0,分式的分母不为0,及解不等式是解决本题的关键.4、【解析】【分析】根据单价=总价 数量结合少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,即可得出关于x的分式方程,此题得解.【详解】依据题意,得:故答案为:【考点】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.5、-1或5或【解析】【分析】直接解方程再利用一元一次方程无解和分式方程无解分别分析得出答案.【详解】去分
15、母得:,可得:,当时,一元一次方程无解,此时,当时,则,解得:或.故答案为:或或.【考点】此题主要考查了分式方程的解,正确分类讨论是解题关键.四、解答题1、 (1)(2)(3)【解析】【分析】(1)根据二次根式的运算可进行求解;(2)化简二次根式,然后再进行求解;(3)根据立方根及实数的运算可进行求解(1)解:原式=;(2)解:原式=;(3)解:原式=【考点】本题主要考查二次根式的运算及立方根,熟练掌握二次根式的运算及立方根是解题的关键2、(1);(2);(3)【解析】【分析】(1)由平方差的运算法则,即可得到答案;(2)找出题目中的规律,把分母有理化,即可得到答案;(3)先把分母有理化,然后
16、进行化简,即可得到答案【详解】解:(1),这个无理数为:;(2)=;(3)=【考点】本题考查了二次根式的运算法则,分母有理化,平方差运算,熟练掌握运算法则,正确的发现题目中的规律是解题关键3、 (1)见解析(2),理由见解析【解析】【分析】(1)运用SSS证明即可;(2)由(1)得,根据内错角相等,两直线平行可得结论(1)在和中,(SSS);(2)AC和BD的位置关系是,理由如下:,【考点】本题主要考查了全等三角形的判定与性质,熟练掌握全等三角形的判定定理是解答本题的关键4、(1)60;(2)-【解析】【分析】(1)根据平行线的性质和平角的定义可得EBC=60,AEF=60,根据角平分线的性质
17、和平行线的性质可得EBD=BDE=DBC=30,再根据三角形内角和定理可求BAD的度数;(2)过点A作AGBC,则BDA=DBC+DAG=DBC+FAD+FAG=DBC+FAD+C=,依此即可求解【详解】解:(1)EFBC,BEF=120,EBC=60,AEF=60,又BD平分EBC,EBD=BDE=DBC=30,又BDA=90,EDA=60,BAD=60;(2)如图2,过点A作AGBC,则BDA=DBC+DAG=DBC+FAD+FAG=DBC+FAD+C=,则FAD+C=-DBC=-ABC=-【考点】考查了三角形内角和定理,平行线的性质,角平分线的性质,准确识别图形是解题的关键5、(1)1;(2)不超过m的最大整数是2019【解析】【分析】(1)由的规律写出式子即可;(2)根据题目中的规律计算即可得到结论【详解】解:(1)观察可得,1;(2)m+1+1+1+12019+(+)2019+(1+)2019+(1)=,不超过m的最大整数是2019【考点】本题主要考查了二次根式的性质与化简,解题的关键是找出规律