1、京改版八年级数学上册期末定向测评试题 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、如图为了测量B点到河对面的目标A之间的距离,在B点同侧选择了一点C,测得ABC65,ACB35,然后在M处立了标杆
2、,使MBC65,MCB35,得到MBCABC,所以测得MB的长就是A,B两点间的距离,这里判定MBCABC的理由是()ASASBAAACSSSDASA2、观察“赵爽弦图”(如图),若图中四个全等的直角三角形的两直角边分别为a,b,根据图中图形面积之间的关系及勾股定理,可直接得到等式()ABCD3、把四张形状大小完全相同的小长方形卡片(如图,卡片的长为,宽为)不重叠地放在一个底面为长方形(长为,宽为4)的盒子底部(如图),盒子底面未被卡片覆盖的部分用阴影表示,则图中两块阴影部分的周长和是()ABCD4、已知a2b0,则代数式的值为()A1BCD25、下列式子:,其中分式有()A1个B2个C3个D
3、4个二、多选题(5小题,每小题4分,共计20分)1、下列说法中,正确的是( )A用同一张底片冲出来的10张五寸照片是全等形;B我国国旗上的四颗小五角星是全等形;C所有的正六边形是全等形D面积相等的两个直角三角形是全等形2、如图,点P在AOB的平分线上,若使AOPBOP,则需添加的一个条件是()AOA=OBBAP=BPCAOP=BOPDAPO=BPO3、如图是一个风筝的图案,它是以直线AF为对称轴的轴对称图形,下列结论中一定成立的是()AABDACDBAF垂直平分EGCB=CDDEEG4、下列说法不正确的是()A二次根式有意义的条件是x0B二次根式有意义的条件是x3C若a为实数,则()2D若y,
4、则y0,x25、如图,则下列结论正确的是()ABCD第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、当x_时,分式有意义2、如图,已知,是角平分线且,作的垂直平分线交于点F,作,则周长为_3、如图,是的中线,点F在上,延长交于点D若,则_4、式子有意义的条件是_5、计算:_四、解答题(5小题,每小题8分,共计40分)1、(1)计算:(2)2(3.14)0+;(2)化简:(x3)(x+3)+x(2x)2、如图,点D,E在ABC的边BC上,ABAC,ADAE,求证:BDCE3、如图,在四边形ABCD中,BAD90,点E在AC上,ECEDDA求CAB的度数4、观察下列两个等式
5、:,给出定义如下:我们称使等式成立的一对有理数,为“同心有理数对”,记为,如:数对,都是“同心有理数对”(1)数对,是“同心有理数对”的是;(2)若是“同心有理数对”,求的值;(3)若是“同心有理数对”,则“同心有理数对”(填“是”或“不是”)5、如图,在中,点是中点,点为边上一点,连接,以为边在的左侧作等边三角形,连接(1)的形状为_;(2)随着点位置的变化,的度数是否变化?并结合图说明你的理由;(3)当点落在边上时,若,请直接写出的长-参考答案-一、单选题1、D【解析】【分析】利用全等三角形的判定方法进行分析即可【详解】解:在ABC和MBC中,MBCABC(ASA),故选:D【考点】本题考
6、查了全等三角形的应用,熟练掌握三角形全等的判定定理是解题的关键2、C【解析】【分析】根据小正方形的面积等于大正方形的面积减去4个直角三角形的面积可得问题的答案【详解】标记如下:,(ab)2a2+b24a22ab+b2故选:C【考点】此题考查的是利用勾股定理的证明,可以完全平方公式进行证明,掌握面积差得算式是解决此题关键3、B【解析】【分析】分别求出较大阴影的周长和较小阴影的周长,再相加整理,即得出答案【详解】较大阴影的周长为:,较小阴影的周长为:,两块阴影部分的周长和为:= , 故两块阴影部分的周长和为16故选B【考点】本题考查了图形周长,整式加减的应用,利用数形结合的思想求出较大阴影的周长和
7、较小阴影的周长是解题的关键4、B【解析】【分析】把a2b0代入代数式整理后约分可得【详解】解:因为a2b0,所以故选:B【考点】本题考查分式的化简求值,将代数式进行化简是解题的关键5、B【解析】【分析】根据分母中含有字母的式子是分式,可得答案【详解】解:,的分母中含有字母,属于分式,共有2个故选:B【考点】本题考查了分式的定义,熟悉相关性质,注意是常数,是解题的关键二、多选题1、AB【解析】【分析】根据能互相重合的两个图形叫做全等图形对各小题分析判断即可得解【详解】解:A、用同一张底片冲出来的10张五寸照片是全等形,正确;B、我国国旗上的四颗小五角星是全等形,正确;C、所有的正六边形是全等形,
8、错误,正六边形的边长不一定相等;D、面积相等的两个直角三角形是全等形,错误故选:AB【考点】本题考查了全等图形,熟记概念是解题的关键,多边形要注意从角和边两个方面考虑2、AD【解析】【分析】由已知可知一边一角对应相等,再结合各选项根据全等三角形的判定方法逐一进行判断即可【详解】点P在AOB的平分线上, ,又有 ,A、若 ,可用边角边证明AOPBOP,故本选项符合题意;B、若 ,是边边角,不能证明AOPBOP,故本选项不符合题意;C、若,只有一对角,一对边对应相等,不能证明AOPBOP,故本选项不符合题意;D、若 ,可用角边角证明AOPBOP,故本选项符合题意;故选:AD【考点】本题主要考查了全
9、等三角形的判定,熟练掌握全等三角形的判定方法边角边、角边角、边边边是解题的关键3、ABC【解析】【分析】认真观察图形,根据轴对称图形的性质得选项A、B、C都是正确的,没有理由能够证明DEG是等边三角形【详解】解:A、因为此图形是轴对称图形,则ABDACD正确;B、对称轴垂直平分对应点连线,正确;C、由三角形全等可知,BC,正确;D、题目中没有60条件,不能判断是等边三角形,故不能得到DEEG错误故选:ABC【考点】本题考查了轴对称的性质;解决此题要注意,不要受图形误导,要找准各选项正误的具体原因是正确解答本题的关键4、ABC【解析】【分析】根据二次根式有意义的条件和分式有意义的条件逐个判断即可
10、【详解】解:A、要使有意义,必须x-10,即x1,故本选项符合题意;B、要使有意义,必须x-30,即x3,故本选项符合题意;C、当a0时,()2才和相等,当a0时,无意义,故本选项符合题意;D、要使y=成立,必须y0,x-2,故本选不项符合题意;故选ABC【考点】本题考查了二次根式有意义的条件和分式有意义的条件,能熟记二次根式有意义的条件和分式有意义的条件是解此题的关键5、ACD【解析】【分析】先证出(AAS),得,等量代换得,故C正确;证出(ASA),得到EM=FN,故A正确;根据ASA证出,故D正确;若,则,但不一定为,故B错误;即可得出结果【详解】解:在和中,(AAS),故C选项说法正确
11、,符合题意;在和中,(ASA),EM=FN,故A选项说法正确,符合题意;在和中,(ASA),故D选项说法正确,符合题意;若,则,但不一定为,故B选项说法错误,不符合题意;故选ACD【考点】本题考查了全等三角形的判定与性质,解题的关键是熟练掌握全等三角形的判定与性质三、填空题1、【解析】【分析】分母不为零时,分式有意义.【详解】当2x10,即x时,分式有意义故答案为【考点】本题考点:分式有意义.2、【解析】【分析】知道和是角平分线,就可以求出,的垂直平分线交于点F可以得到AF=FD,在直角三角形中30所对的边等于斜边的一半,再求出DE,得到【详解】解: 的垂直平分线交于点F, (垂直平分线上的点
12、到线段两端点距离相等) ,是角平分线 , 【考点】此题考查角平分线的性质、直角三角形的性质、垂直平分线的性质的综合题,掌握运用三者的性质是解题的关键3、【解析】【分析】连接ED,由是的中线,得到,由,得到,设,由面积的等量关系解得,最后根据等高三角形的性质解得,据此解题即可【详解】解:连接ED是的中线,设,与是等高三角形,故答案为:【考点】本题考查三角形的中线、三角形的面积等知识,是重要考点,难度一般,掌握相关知识是解题关键4、且【解析】【分析】式子有意义,则x-20,x-30,解出x的范围即可.【详解】解:式子有意义,则x-20,x-30,解得:,故答案为且.【考点】此题考查二次根式及分式有
13、意义,熟练掌握二次根式的被开方数大于等于0,分式的分母不为0,及解不等式是解决本题的关键.5、【解析】【分析】根据实数的性质即可化简求解【详解】解:故答案为:【考点】本题主要考查了实数的运算,解题的关键是掌握负指数幂的运算四、解答题1、(1)3+2;(2)2x9【解析】【分析】(1)先计算负整数指数幂,零指数幂,化简二次根式,然后计算加减法;(2)先利用平方差公式和单项式乘多项式去括号,然后计算加减法【详解】(1)原式41+23+2(2)原式x29+2xx22x9【考点】考查了平方差公式,实数的运算,单项式乘多项式,零指数幂等知识点,熟记计算法则即可解答,属于基础题2、见解析【解析】【分析】过
14、A作AFBC于F,根据等腰三角形的性质得出BF=CF,DF=EF,即可求出答案【详解】证明:如图,过A作AFBC于F,AB=AC,AD=AE,BF=CF,DF=EF,BF-DF=CF-EF,BD=CE【考点】本题考查了等腰三角形的性质的应用,注意:等腰三角形的底边上的高,底边上的中线,顶角的平分线互相重合3、【解析】【分析】根据等腰三角形的性质,等边对等角,又利用平行线的性质可得角度之间的关系,从而可以求解【详解】DECE,ECDCDEDEA是CDE的外角,DEAECDCDE2ECDDEAD,DEADAE,DAE2ECD,CABDCA,DAE2CABBAD90,故答案为:【考点】本题主要考查等
15、腰三角形和平行线的性质,利用等腰三角形和平行线的性质得到角之间的关系是解题的关键4、(1);(2);(3)是【解析】【分析】(1)根据:使等式成立的一对有理数,为“同心有理数对”,判断出数对,是“同心有理数对”的是哪个即可;(2)根据是“同心有理数对”,得到,求解即可;(3)根据是“同心有理数对”,得到,进行判断即可;【详解】解:(1),数对,、不是“同心有理数对”;,是“同心有理数”,数对,是“同心有理数对”的是;(2)是“同心有理数对”,(3)是理由:是“同心有理数对”,是“同心有理数对”【考点】本题主要考查了有理数和等式的性质,准确理解计算是解题的关键5、(1)等边三角形;(2)的度数不
16、变,理由见解析;(3)2【解析】【分析】(1)由、,可得出、,结合点是中点,可得出,进而即可得出为等边三角形;(2)由(1)可得出,根据可得出,再结合、即可得出,根据全等三角形的性质即可得出,即的度数不变;(3)易证为等腰三角形,由等腰三角形及等边三角形的性质可得出,进而可得出【详解】解:(1)在中,点是中点,为等边三角形故答案为等边三角形(2)的度数不变,理由如下:,点是中点,为等边三角形,又为等边三角形,在和中,即的度数不变(3)为等边三角形,为等腰三角形,【考点】本题考查了等边三角形的判定与性质、全等三角形的判定与性质、含度角的直角三角形勾股定理以及等腰三角形的性质,解题的关键是:(1)找出、;(2)利用全等三角形的判定定理找出;(3)根据等腰三角形及等边三角形的性质找出