1、七年级数学上册第五章一元一次方程章节测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列变形中正确的是()A方程,移项,得B方程,去括号,得C方程,未知数系数化为1,得D方程化为2、已知一元一次方程,
2、则下列解方程的过程正确的是()A去分母,得B去分母,得C去分母,去括号,得D去分母,去括号,得3、下列说法中,正确的有()A等式两边各加上一个式子,所得的结果仍是等式B等式两边各乘以一个数,所得的结果仍是等式C等式两边都除以同一个数,所得的结果仍是等式D一个等式的左右两边分别与另一个等式的左右两边相加,所得的结果仍是等式4、下列变形正确的是()A若,则B若,则C若,则D若,则5、甲车队有汽车56辆,乙车队有汽车32辆,要使两车队汽车一样多,设由甲队调出x辆汽车给乙队,则可得方程()ABCD6、若是方程的解,则a的值是()AB1CD37、某超市正在热销一种商品,其标价为每件12元,打8折销售后每
3、件可获利2元,该商品每件的进价为()A7.4元B7.5元C7.6元D7.7元8、小涵在2020年某月的月历上圈出了三个数a,b,c,并求出了它们的和为30,则这三个数在月历中的排位位置不可能是()ABCD9、若关于x的方程3x+2k-4=0的解是x=-2,则k的值是()A5B2C2D510、下列解方程的变形过程正确的是()A由移项得:B由移项得:C由去分母得:D由去括号得:第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、为迎接一年一度的“春节”的到来,綦江区某水果店推出了A、B、C三类礼包,已知这三类礼包均由苹果、芒果、草莓三种水果搭配而成,每袋礼包的成本均为苹果、芒果
4、、草莓三种水果成本之和每袋A类礼包有5斤苹果、2斤芒果、8斤草莓;每袋C类礼包有7斤苹果、1斤芒果、4斤草莓已知每袋A的成本是该袋中苹果成本的3倍,利润率为30%,每袋B的成本是其售价的,利润是每袋A利润的;每袋C礼包利润率为25%若该店12月12日当天销售A、B、C三种礼包袋数之比为2:1:5,则当天该水果店销售总利润率为_2、在等式的两边同时减去一个多项式可以得到等式,则这个多项式是_3、如图,方格表中的格子填上了数,每一行每一列及两条对角线中所填数的和均相等,则x的值是_4、挖一条水渠,甲、乙两队单独做分别需要20天、15天完成现在先由甲队单独挖6天,然后两人合作挖一条水渠要用_天5、已
5、知是关于x的一元一次方程的解,则a的值为_三、解答题(5小题,每小题10分,共计50分)1、已知如图,在数轴上有A,B两点,所表示的数分别为,点A以每秒5个单位长度的速度向右运动,同时点B以每秒3个单位长度的速度也向右运动,如果设运动时间为t秒,解答下列问题:(1)运动前线段AB的长为 ;运动1秒后线段AB的长为 ;(2)运动t秒后,点A,点B在数轴上表示的数分别为 和 ;(用含t的代数式表示)(3)求t为何值时,点A与点B恰好重合;(4)在上述运动的过程中,是否存在某一时刻t,使得线段AB的长为5,若存在,求t的值;若不存在,请说明理由2、如图一,已知数轴上,点表示的数为,点表示的数为,动点
6、从出发,以个单位每秒的速度沿射线的方向向右运动,运动时间为秒(1)线段_(2)当点运动到的延长线时_(用含的代数式表示)(3)如图二,当秒时,点是的中点,点是的中点,求此时的长度(4)当点从出发时,另一个动点同时从点出发,以个单位每秒的速度沿射线向右运动,点表示的数为:_(用含的代数式表示),点表示的数为:_(用含的代数式表示)存在这样的值,使、三点有一点恰好是以另外两点为端点的线段的中点,请直接写出值_3、粤港澳大湾区自动驾驶产业联盟积极推进自动驾驶出租车应用落地工作,无人化是自动驾驶的终极目标某公交集团拟在今明两年共投资9000万元改装260辆无人驾驶出租车投放市场今年每辆无人驾驶出租车的
7、改装费用是50万元,预计明年每辆无人驾驶出租车的改装费用可下降(1)求明年每辆无人驾驶出租车的预计改装费用是多少万元;(2)求明年改装的无人驾驶出租车是多少辆4、一位商人来到一座新城市,想租一套房子,A家房东的条件是先交2000元,每月租金1200元;B家房东的条件是每月租金1400元(1)这位商人想在这座城市住半年,则租哪家的房子划算?(2)如果这位商人想住一年,租哪家的房子划算?(3)这位商人住多长时间时,租两家的房子租金一样?5、若,利用等式的性质,比较a与b的大小-参考答案-一、单选题1、D【解析】【分析】根据解方程的步骤逐一对选项进行分析即可【详解】解:方程,移项,得,故选项A变形错
8、误;方程,去括号,得,故选项B变形错误;方程,未知数系数化为1,得,故选项C变形错误;方程化为,利用了分数的基本性质,故选项D正确故选:D【考点】本题主要考查解一元一次方程,掌握解一元一次方程的步骤是解题的关键2、C【解析】【分析】根据解一元一次方程的步骤:去分母,去括号,移项合并同类,系数化1,进行选择即可.【详解】原式等号左右同乘2去分母,得,所以A,B错误;原式去分母去括号后应是,所以D错误,故答案选C.【考点】本题考查的是一元一次方程的解法,能够准确的去分母和去括号是解题的关键.3、D【解析】【分析】根据等式的性质:等式两边同时加上或减去同一个整式,等式仍然成立;等式两边同时乘以或除以
9、同一个不为0的整式,等式仍然成立,进行逐一判断即可【详解】解:A、等式两边各加上同一个式子,所得的结果仍是等式,故此选项不符合题意;B、等式两边各乘以一个相同的数,所得的结果仍是等式,故此选项不符合题意;C、等式两边都除以同一个不为0的数,所得的结果仍是等式,故此选项不符合题意;D、一个等式的左右两边分别与另一个等式的左右两边相加,所得的结果仍是等式,故此选项符合题意;故选D【考点】本题主要考查了等式的基本性质,熟记等式的基本性质是解题的关键4、D【解析】【分析】根据移项,去括号,去分母,通分的运算法则逐一运算判断即可【详解】解:移项得:,故错误;:去括号得:,故错误;:去分目得:,故错误;:
10、所有项除得:,故正确;故选:【考点】本题主要考查了解一元一次方程的步骤,熟悉掌握运算的法则是解题的关键5、B【解析】【分析】表示出抽调后两车队的汽车辆数然后根据两车队汽车一样多列出方程即可【详解】解:设由甲队调出x辆汽车给乙队,则甲车队有汽车(56-x)辆,乙车队有汽车(32+x)辆,由题意得,56-x=32+x故选:B【考点】本题考查了由实际问题抽象出一元一次方程,表示出抽调后两车队的汽车辆数是解题的关键6、D【解析】【分析】将方程的解x=1代入方程求解即可.【详解】解:根据题意,将代入方程,得.故选:【考点】本题主要考查方程的解,解决本题的关键是要将方程解代入方程求解.7、C【解析】【分析
11、】设该商品每件的进价为x元,根据利润=售价-成本,即可得出关于x的一元一次方程,解之即可得出结论【详解】解:设该商品每件的进价为x元,依题意,得:,解得:故选:C【考点】本题考查了一元一次方程的应用找准等量关系,正确列出一元一次方程是解题的关键8、D【解析】【分析】由月历表数字之间的特点可依次排除选项即可【详解】解:由A选项可得:,解得,故不符合题意;由B选项可得:,解得,故不符合题意;由C选项得,解得,故不符合题意;由D选项得,解得,故符合题意;故选D【考点】本题主要考查一元一次方程的应用,熟练掌握一元一次方程的应用是解题的关键9、A【解析】【分析】根据一元一次方程的解的定义计算即可【详解】
12、解:关于x的方程3x+2k-4=0的解是x=-2,-6+2k-4=0,解得,k=5,故选:A【考点】本题考查的是一元一次方程的解,解题的关键是掌握使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解10、D【解析】【分析】对于本题,我们可以根据解方程式的变形过程逐项去检查,必须符合变形规则,移项要变号【详解】解析:A由移项得:,故A错误;B由移项得:,故B错误;C.由去分母得:,故C错误;D.由去括号得: 故D正确故选:D【考点】本题主要考查了解一元一次方程变形化简求值,解题关键是:必须熟练运用移项法则二、填空题1、26%【解析】【分析】根据利润率和成本、销售之间的关系式利润率=100%
13、可设苹果、芒果、草莓三种水果成本x、y、z,可用x表示A的成本为5x3=15x,利润15x30%=4.5x,售价为19.5xB的利润为4.5x=2x,售价为12x,成本为10x同理可求出C的成本12x,售价为15x再根据三种礼包销售量求出总的销售额,最后求出总利润率【详解】解:设苹果、芒果、草莓三种水果的成本分别为x、y、z,则5x+2y+8z=35x每袋A的成本是15x,利润率为30%,每袋A的利润为4.5x,售价为15x(1+30%)=19.5x,每袋B的成本是其售价的,利润是每袋A利润的,B的利润为4.5x=2x,售价为12x,成本为10x每袋C礼包利润率为25%,成本为7x+y+4z=
14、12x,C的售价为15xA、B、C三种礼包袋数之比为2:1:5,;故答案为:26%【考点】此题考查的是用未知数表示各个参数,掌握售价、成本、利润之间的关系即可解出此题2、【解析】【分析】根据,可得,则等式两边同时减去得:,由此即可得到答案【详解】解:,等式两边同时减去得:,等式的两边同时减去一个多项式可以得到等式,故答案为:【考点】本题主要考查了等式的性质:等式两边同时加上(或减去)同一个整式,等式仍然成立;等式两边同时乘或除以同一个不为0的整式,等式仍然成立3、9【解析】【分析】先算出最中间格子上的数,再算出右上角格子的数,最后可以得到x的值【详解】解:16+11+12=39,由39-(11
15、+15)=13得最中间格子上的数为13,再由39-(12+13)=14得右上角格子的数为14,x=39-(16+14)=9故答案为9【考点】本题考查整数的加减运算,牢牢把握“每一行每一列及两条对角线中所填数的和均相等”这个已知条件是解题关键4、6【解析】【分析】设他们合作挖一条水渠的时间是x天,根据总工作量为单位“1”,列方程求出x的值即可得出答案【详解】解:设他们合作挖一条水渠的时间是x天,根据题意得:,解得:x=6,所以,他们合作挖一条水渠的时间是6天故答案是:6【考点】本题考查了一元一次方程的应用,分析题意,找到合适的等量关系是解决问题的关键此题主要用到公式:工作总量=工作效率工作时间5
16、、【解析】【分析】把代入方程,解关于的方程即可得【详解】把代入方程得:,解得:故答案为:【考点】本题主要考查了已知方程的解求参数的值,熟练掌握一元一次方程的解是解决本题的关键三、解答题1、 (1)6;4(2);(3)(4)或【解析】【分析】(1)根据数轴上两点间的距离等于右边的数减去左边的数求出AB的长,且求出1秒后AB的长即可;(2)根据路程时间速度分别表示出A,B运动的距离,用原来表示的是加上运动的距离,即可表示出A,B表示的数;(3)根据A,B表示的数相同列出方程,求出方程的解即可得到t的值;(4)存在,分两种情况分别求出t的值即可(1)解:运动前线段AB的长为(4)(10)6;运动1秒
17、后线段AB的长为(1)(5)4;故答案为:6;4(2)解:运动t秒后,用t表示A,B分别为5t10,3t4;故答案为:5t10,3t4(3)解:根据题意得:5t103t4,解得:;答:当时,点A与点B恰好重合(4)解: 存在当A没追上B时,可得由题意: ,解得:;当A,B错开后,可得,解得:,t的值为或秒时,线段AB的长为5【考点】此题考查了一元一次方程的应用,数轴以及两点间的距离,弄清题意是解本题的关键2、 (1)(2)(3)(4);秒或秒或秒【解析】【分析】(1)由数轴上两点间的距离的定义求解即可,数轴上两点间的距离等于数轴上两点所对应的数的差的绝对值;(2)结合“路程速度时间”以及两点间
18、的距离公式,用点P运动路程可求解;(3)当秒时,根据路程速度时间,得到,所以,再 由点是的中点,点是的中点,利用中点的定义得到,最后由即可得到结论(4)设运动时间为,当点从点出发时,以个单位每秒的速度沿射线的方向向右运动,另一个动点同时从点出发,以个单位每秒的速度沿射线向右运动,结合“路程速度时间”,再利用数轴上两点间距离公式,则点所表示的数是点的运动路程加上点所表示的数,点所表示的数是点的运动路程加上点所表示的数即可结合的结论和点所表示的数,分三种情况讨论即可(1)解:在数轴上,点A表示的数为6,点B表示的数为8,故答案为:14(2)在数轴上,点表示的数为,点表示的数为,动点从点出发时,以个
19、单位每秒的速度沿射线的方向向右运动,运动时间为秒,故答案为:(3)点表示的数为,点表示的数为,动点从点出发时,以个单位每秒的速度沿射线的方向向右运动,当秒时,又点是的中点,点是的中点,此时的长度为(4)设运动时间为,当点从点出发时,以个单位每秒的速度沿射线的方向向右运动,另一个动点同时从点出发,以个单位每秒的速度沿射线向右运动,点所表示的数为:,点所表示的数为:,故答案为:;结合的结论和点所表示的数,可知:点表示的数为,点所表示的数为:,点所表示的数为:,分以下三种情况:若点为中点,则,解得:;若点为中点,则,解得:;若点为中点,则,解得:综上所述,当为秒或秒或秒时,、三点中有一点恰好是以另外
20、两点为端点的线段的中点【考点】本题考查了数轴上的动点问题,数轴上两点之间的距离,一元一次方程的应用,中点的定义,注意分情况讨论解题的关键是学会用含有t的式子表示动点点P和点Q表示的数3、(1)明年每辆无人驾驶出租车的预计改装费用是25万元;(2)明年改装的无人驾驶出租车是160辆【解析】【分析】(1)根据今年每辆无人驾驶出租车的改装费用是50万元,预计明年每辆无人驾驶出租车的改装费用可下降,列出式子即可求出答案;(2)根据“某公交集团拟在今明两年共投资9000万元改装260辆无人驾驶出租车投放市场”列出方程,求解即可【详解】解:(1)依题意得:(万元)(2)设明年改装的无人驾驶出租车是x辆,则
21、今年改装的无人驾驶出租车是(260-x)辆,依题意得:解得:答:(1)明年每辆无人驾驶出租车的预计改装费用是25万元;(2)明年改装的无人驾驶出租车是160辆【考点】本题考查了一元一次方程的实际应用问题,解题的关键是找到数量关系,列出方程4、(1)住半年时,租B家的房子划算;(2)住一年时,租A家的房子划算;(3)这位商人住10个月时,租两家的房子租金一样【解析】【分析】(1)分别根据A、B两家租金的缴费方式计算A、B两家半年的租金,然后比较即得答案;(2)分别根据A、B两家租金的缴费方式计算A、B两家一年的租金,然后比较即得答案;(3)根据A家租金(2000+1200租的月数)=B家租金(1
22、400租的月数)设未知数列方程解答即可【详解】解:(1)如果住半年,交给A家的租金是(元),交给B家的租金是(元),因为92008400,所以住半年时,租B家的房子划算(2)如果住一年,交给A家的租金是(元),交给B家的租金是(元),因为1640016800,所以住一年时,租A家的房子划算(3)设这位商人住x个月时,租两家的房子租金一样,根据题意,得解方程,得答:这位商人住10个月时,租两家的房子租金一样【考点】本题考查了一元一次方程的应用,属于常考题型,正确理解题意、明确A、B两家租金的缴费方式是解题的关键5、【解析】【分析】利用等式的性质将一个字母用另一个字母表示出来,再判断即可【详解】解:等式两边同减去,得: ,等式两边同减去,得: ,等式两边再同时加上1,得:,【考点】本题主要考查了等式的基本性质等式性质1:等式的两边同时加上或减去同一个数或字母,等式仍成立;等式性质2:等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立,熟练运用等式的性质进行变形是解决本题的关键