1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版数学八年级上册期中综合复习试题 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、利用边长相等的正三角形和正六边形地板砖镶嵌地面,在每个顶点周围有块
2、正三角形和块正六边形地板砖,则的值为()A3或4B4或5C5或6D42、如图,RtACB中,ACB=90,ACB的角平分线AD,BE相交于点P,过P作PFAD交BC的延长线于点F,交AC于点H,则下列结论:APB=135; AD=PF+PH;DH平分CDE;S四边形ABDE=SABP;SAPH=SADE,其中正确的结论有()个A2B3C4D53、如果一个多边形内角和是外角和的4倍,那么这个多边形有()条对角线A20B27C35D444、如图,在中,连接BC,CD,则的度数是()A45B50C55D805、如图,在ABC中,D为BC上一点,12,34,BAC105,则DAC的度数为()A80B8
3、2C84D86二、多选题(5小题,每小题4分,共计20分)1、如图,下列结论正确的是() 线 封 密 内 号学级年名姓 线 封 密 外 ABCD2、用下列一种正多边形可以拼地板的是()A正三角形B正六边形C正八边形D正十二边形3、若一个三角形的两边长分别为5和7,则该三角形的周长可能是()A12B16C19D254、(多选)如图,在中,分别为边,上的点,平分,于点,为的中点,延长交于点,则下列判断中正确的结论有()A线段是的高B与面积相等CD5、一个多边形被截去一个角后,变为五边形,原来的多边形是几边形()A3B4C5D6第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、
4、如图,是一个中心对称图形,A为对称中心,若,则_,_2、我们定义:一个三角形最小内角的角平分线将这个三角形分割得到的两个三角形它们的面积之比称为“最小角割比”(),那么三边长分别为7,24,25的三角形的最小角割比是_3、如图,中,点,分别在,上,与交于点,若,则的面积_4、在三角形的三条高中,位于三角形外的可能条数是_条5、如图,已知,是角平分线且,作的垂直平分线交于点F,作,则周长为_四、解答题(5小题,每小题8分,共计40分)1、如图,已知ABC,ACAB,C45请用尺规作图法,在AC边上求作一点P,使PBC45(保留作图痕迹不写作法) 线 封 密 内 号学级年名姓 线 封 密 外 2、
5、已知:/求证:/3、已知a,b,c是的三边长,且,若三角形的周长是小于18的偶数(1)求c的值;(2)判断的形状4、如图,在中,点D为上一点,将沿翻折得到,与相交于点F,若平分,(1)求证:;(2)求的度数5、如图,已知ABDC,ACDB,BECE,求证:AEDE.-参考答案-一、单选题1、B【解析】【分析】正多边形的组合能否进行平面镶嵌,关键是看位于同一顶点处的几个角之和能否为360若能,则说明可以进行平面镶嵌;反之,则说明不能进行平面镶嵌【详解】正三边形和正六边形内角分别为60、120,604+120=360,或602+1202=360,a=4,b=1或a=2,b=2,当a=4,b=1时,
6、a+b=5;当a=2,b=2时,a+b=4故选B【考点】解决此类题,可以记住几个常用正多边形的内角,及能够用两种正多边形镶嵌的几个组合 线 封 密 内 号学级年名姓 线 封 密 外 2、B【解析】【分析】正确利用三角形内角和定理以及角平分线的定义即可解决问题正确证明ABPFBP,推出PA=PF,再证明APHFPD,推出PH=PD即可解决问题错误利用反证法,假设成立,推出矛盾即可错误,可以证明S四边形ABDE=2SABP正确由DHPE,利用等高模型解决问题即可【详解】解:在ABC中,AD、BE分别平分BAC、ABCACB=90A+B=90又AD、BE分别平分BAC、ABCBAD+ABE=(A+B
7、)=45APB=135,故正确BPD=45又PFADFPB=90+45=135APB=FPB又ABP=FBPBP=BPABPFBP(ASA)BAP=BFP,AB=FB,PA=PF在APH和FPD中APHFPD(ASA)PH=PDAD=AP+PD=PF+PH故正确ABPFBP,APHFPDSAPB=SFPB,SAPH=SFPD,PH=PDHPD=90HDP=DHP=45=BPDHDEPSEPH=SEPDSAPH=SAED,故正确S四边形ABDE=SABP+SAEP+SEPD+SPBD=SABP+(SAEP+SEPH)+SPBD=SABP+SAPH+SPBD=SABP+SFPD+SPBD=SABP
8、+SFBP=2SABP,故不正确若DH平分CDE,则CDH=EDHDHBE 线 封 密 内 号学级年名姓 线 封 密 外 CDH=CBE=ABECDE=ABCDEAB,这个显然与条件矛盾,故错误故选B【考点】本题考查了角平分线的判定与性质,三角形全等的判定方法,三角形内角和定理,三角形的面积等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型3、C【解析】【分析】根据多边形的内角和公式(n-2)180与外角和定理列出方程,然后求解,多边形对角线的条数可以表示成【详解】解:设这个多边形是n边形,根据题意得,(n-2)180=4360,解得n=1010(10-3)2=35(条)故选:C
9、【考点】本题考查了多边形的内角和与外角和、方程的思想关键是记住内角和的公式与外角和的特征,及多边形对角线的条数公式4、B【解析】【分析】连接AC并延长交EF于点M由平行线的性质得,再由等量代换得,先求出即可求出【详解】解:连接AC并延长交EF于点M,故选B【考点】本题主要考查了平行线的性质以及三角形的内角和定理,属于基础题型5、A【解析】【分析】根据三角形的内角和定理和三角形的外角性质即可解决 线 封 密 内 号学级年名姓 线 封 密 外 【详解】解:BAC105,237512,431222把代入得:3275,225DAC1052580故选A【考点】此题主要考查了三角形的外角性质以及三角形内角
10、和定理,熟记三角形的内角和定理,三角形的外角性质是解题的关键二、多选题1、AD【解析】【分析】根据三角形的一个外角等于和它不相邻的两个内角的和作答【详解】A、1是ABC的一个外角,123,正确,符合题意;B、1是ABC的一个外角,123,选项错误,不符合题意;C、1是ABC的一个外角,123,又2是CDE的一个外角,245,选项错误,不符合题意;D、2是CDE的一个外角,245,正确,符合题意故选:AD【考点】本题主要考查了三角形的外角性质,解题关键是掌握一个外角等于和它不相邻的两个内角的和2、AB【解析】【分析】分别求出各个正多边形的每个内角的度数,结合镶嵌的条件即可求出答案【详解】解:A、
11、 正三边形的一个内角度数为18036,是360的约数,可以拼地板,符合题意; B、正六边形的每个内角是120,能整除360,可以拼地板符合题意; 线 封 密 内 号学级年名姓 线 封 密 外 C. 正八边形的一个内角度数为(8-2)1808135,不是360的约数,不可以拼地板,不符合题意;D.正十二边形的一个内角度数为(12-2)18012150,不是360的约数,不可以拼地板,不符合题意;故选AB【考点】本题考查了平面镶嵌(拼地板),计算正多边形的内角能否整除360是解答此题的关键3、BC【解析】【分析】先根据三角形三条边的关系求出第三条边的取值范围,进而求出周长的取值范围,从而可的求出符
12、合题意的选项【详解】解:三角形的两边长分别为5和7,7-5=2第三条边7+5=12,5+7+2三角形的周长5+7+12,即14三角形的周长24,故选BC【考点】本题考查了三角形三条边的关系:三角形任意两边之和大于第三边,任意两边之差小于第三边,据此解答即可4、BCD【解析】【分析】根据三角形的高线、中线的性质及全等三角形与三角形内角和定理依次进行判断即可得出结果【详解】解:CEAD,ACE的高是AF,不是AD,选项A不符合题意;G为AD中点,BG是ABD的中线,ABG与BDG面积相等,选项B符合题意;AD平分BAC,CEAD,EAF=CAF,AFE=AFC=90,在AFE与AFC中,AFEAF
13、C,AE=AC,AEC=ACE,AB-AE=BE,AB-AC=BE,选项D符合题意;AEC=CBE+BCE, 线 封 密 内 号学级年名姓 线 封 密 外 ACE=CBE+BCE,CAD+ACE=90,CAD+CBE+BCE=90,选项C符合题意,故选:BCD【考点】题目主要考查全等三角形的判定和性质,三角形内角和定理及三角形的基本性质,熟练掌握全等三角形与三角形的基本性质是解题关键5、BCD【解析】【分析】利用直线截去多边形的一个角,注意分类讨论,直线不过多边形的顶点,过一个顶点,过两个顶点,从而可得答案.【详解】解:一个三角形被截去一个角后,得不到五边形,故不符合题意;如图,一个四边形被截
14、去一个角后,可得到五边形,故符合题意;如图,一个五边形被截去一个角后,可得到五边形,故符合题意;如图,一个六边形被截去一个角后,可得到五边形,故符合题意;故选:【考点】本题考查的是认识多边形,利用直线截去多边形的一个角所形成的新的多边形,理解截的方法是解题的关键.三、填空题1、 30 2【解析】【分析】根据中心对称图形的性质,得到,再由全等三角形的性质解题即可【详解】解:A为对称中心,绕点A旋转能与重合, 线 封 密 内 号学级年名姓 线 封 密 外 ,【考点】本题考查中心对称图形的性质、全等三角形的性质等知识,是基础考点,掌握相关知识是解题关键2、【解析】【分析】根据题意作出图形,然后根据角
15、平分线的性质得到,再根据三角形的面积和最小角割比的定义计算即可【详解】解:如图示,则,根据题意,作的角平分线交于点,过点,作交于点,过点,作交于点,则,则()故答案是:【考点】本题考查了三角形角平分线的性质和三角形的面积计算,熟悉相关性质是解题的关键3、7.5【解析】【分析】观察三角形之间的关系,利用等高或同高的两个三角形的面积之比等于底之比,利用已知比例关系进行转化求解【详解】如下图所示,连接, , 线 封 密 内 号学级年名姓 线 封 密 外 ,设, ,由,可得, ,解得 , 故答案为:7.5【考点】本题考查的是等高同高三角形,应用等高或同高的两个三角形的面积之比等于底之比进行求解是本题的
16、关键4、0或2【解析】【分析】当三角形为钝角三角形时,三角形的高有两条在三角形外,一条在三角形内;当三角形为直角三角形和锐角三角形时没有高在三角形外【详解】解:当三角形为直角三角形和锐角三角形时,没有高在三角形外;而当三角形为钝角三角形时,三角形的高有两条在三角形外,一条在三角形内在三角形的三条高中,位于三角形外的可能条数是0或2条故答案为0或2【考点】此题主要考查了三角形的高的位置,不同形状的三角形,它的高的情况不同,要求学生必须熟练掌握5、【解析】【分析】知道和是角平分线,就可以求出,的垂直平分线交于点F可以得到AF=FD,在直角三角形中30所对的边等于斜边的一半,再求出DE,得到【详解】
17、解: 的垂直平分线交于点F, (垂直平分线上的点到线段两端点距离相等) ,是角平分线 线 封 密 内 号学级年名姓 线 封 密 外 , 【考点】此题考查角平分线的性质、直角三角形的性质、垂直平分线的性质的综合题,掌握运用三者的性质是解题的关键四、解答题1、详见解析【解析】【分析】根据尺规作图法,作一个角等于已知角,在AC边上求作一点P,使PBC45即可【详解】解: 作法:(1)以点C为圆心,以任意长为半径画弧交AC于D,交BC于E,(2)以点B为圆心,以CD长为半径画弧,交BC于F,(3)以点F为圆心,以DE长为半径画弧,交前弧于点M,(3)连接BM,并延长BM与AC交于点P,则点P即为所求如
18、图,点P即为所求【考点】本题考查了作图基本作图解决本题的关键是掌握基本作图方法2、见解析【解析】【分析】根据,得到A=C,然后推出AF=CE,即可证明ABFCDE得到AFB=CED,则【详解】解:,A=C,AE=CF,AE+EF=CF+EF,即AF=CE,在ABF和CDE中,ABFCDE(SAS),AFB=CED,【考点】本题主要考查了全等三角形的性质与判定,平行线的性质与判定,熟知全等三角形的性质与判定条件是解题的关键3、(1)4或6;(2)等腰三角形 线 封 密 内 号学级年名姓 线 封 密 外 【解析】【分析】(1)根据三角形三边关系和周长的最小值列式计算即可;(2)根据(1)可得c,根
19、据已知条件得到a=c,即可得到结果;【详解】(1)的周长为,且周长小于18,即,又三角形的周长是小于18的偶数,即为偶数,c为小于8的偶数,则c可以是2,4,6当时,不能构成三角形,故舍去,c的值为4或6(2)由(1)得当时,有;当时,有,为等腰三角形【考点】本题主要考查了三角形三边关系及三角形形状判断的知识点,准确理解是解题的关键4、 (1)证明见解析;(2)【解析】【分析】(1)利用三角形内角和定理求出,再利用折叠和角平分线的性质证明,即可证明;(2)利用三角形内角和定理求出,再利用对顶角相等证明,再利用三角形内角和定理即可求出(1)证明:,,AE平分,(2)解:,且,【考点】本题考查三角
20、形内角和定理,折叠的性质,角平分线的性质,对顶角相等,(1)的关键是求出,证明;(2)的关键是求出5、见解析【解析】【分析】利用SSS证明ABCDCB,根据全等三角形的性质可得ABC=DCB,再由SAS定理证明ABECED,即可证得AE=DE【详解】 线 封 密 内 号学级年名姓 线 封 密 外 证明:在ABC和DCB中, ,ABCDCB(SSS)ABC=DCB在ABE和DCE中,ABEDCE(SAS)AE=DE【考点】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角