1、八年级数学上册第十四章整式的乘法与因式分解专项练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,甲、乙、丙、丁四位同学给出了四种表示该长方形面积的多项式:(2a+b)(m+n);a(m+n)+b(
2、m+n);m(2a+b)+n(2a+b); 2am+2an+bm+bn,你认为其中正确的有()ABCD2、计算:=()ABCD3、a12可以写成()Aa6+a6Ba2a6Ca6a6Da12a4、下面计算正确的是()ABCD5、将多项式xx3因式分解正确的是()Ax(x21)Bx(1x2)Cx(x+1)(x1)Dx(1+x)(1x)6、如图,在长方形ABCD中,横向阴影部分是长方形,纵向阴影部分是平行四边形,依照图中标注的数据,计算空白部分的面积,其面积是()ABCD7、下列分解因式错误的是()A116a2(14a)(14a)Bx3xx(x21)Ca2b2c2(abc)(abc)Dm20.01(
3、m0.1)(m0.1)8、已知,则的值为()ABCD9、若,则、的值为()A,B,C,D,10、若多项式因式分解的结果为,则常数的值为()AB2CD6第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若a+b4,ab1,则(a+2)2(b2)2的值为_2、已知ab=a+b+1,则(a1)(b1)=_3、定义ab=a(b+1),例如23=2(3+1)=24=8则(x1)x的结果为_4、利用1个aa的正方形,1个bb的正方形和2个ab的矩形可拼成一个正方形(如图所示),从而可得到因式分解的公式_5、已知,则_三、解答题(5小题,每小题10分,共计50分)1、先化简,再求值:,
4、其,2、已知x2m2,求(2x3m)2(3xm)2的值3、某校为了改善校园环境,准备在长宽如图所示的长方形空地上,修建两横纵宽度均为a米的三条小路,其余部分修建花圃.(1)用含a,b的代数式表示花圃的面积并化简。(2)记长方形空地的面积为S1,花圃的面积为S2,若2S2-S1=7b2,求的值.4、用简便方法计算:1002-992+982-972+22-125、先化简,再求值:,其中,-参考答案-一、单选题1、C【解析】【分析】根据长方形面积公式判断各式是否正确即可【详解】(2a+b)(m+n),正确;a(m+n)+b(m+n),错误;m(2a+b)+n(2a+b),正确; 2am+2an+bm
5、+bn,正确故正确的有故答案为:C【考点】本题考查了长方形的面积问题,掌握长方形的面积公式是解题的关键2、B【解析】【分析】直接利用单项式乘以单项式运算法则计算得出答案.【详解】解:(2a)(ab)=2a2b故选B.【考点】此题主要考查了单项式乘以单项式,正确掌握运算法则是解题关键.3、C【解析】【分析】分别根据合并同类项法则,同底数幂的乘法法则以及同底数幂的除法法则逐一判断即可【详解】解:Aa6+a6=2a6,故本选项不合题意;Ba2a6=a8,故本选项不合题意;Ca6a6=a12,故本选项符合题意;Da12a=a11,故本选项不合题意故选:C【考点】本题主要考查了同底数幂的乘除法以及幂的乘
6、方与积的乘方,熟练掌握幂的运算法则是解答本题的关键4、C【解析】【分析】根据合并同类项法则,积的乘方、同底数幂乘法法则逐一判断即可得答案.【详解】A.2a和3b不是同类项,不能合并,故该选项计算错误,不符合题意,B.a2和a3不是同类项,不能合并,故该选项计算错误,不符合题意,C.(-2a3b2)3=-8a9b6,故该选项计算正确,符合题意,D.a3a2=a5,故该选项计算错误,不符合题意,故选C.【考点】本题考查整式的运算,熟练掌握合并同类项法则、积的乘方及同底数幂乘法法则是解题关键.5、D【解析】【分析】直接提取公因式x,然后再利用平方差公式分解因式即可得出答案【详解】xx3=x(1x2)
7、=x(1x)(1+x)故选D【考点】本题主要考查了提取公因式法以及公式法分解因式,正确应用公式法是解题关键6、B【解析】【分析】矩形面积减去阴影部分面积,求出空白部分面积即可【详解】空白部分的面积为故选B【考点】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键7、B【解析】【分析】运用平方差公式、提公因式法逐项分析【详解】A、116a2(14a)(14a),正确;B、x3xx(x21) x(x1)(x1),错误;C、a2b2c2(abc)(abc),正确;D、m20.01(m0.1)(m0.1),正确;故选B【考点】本题考查因式分解的方法,熟练掌握平方差公式、提公因式法是关键8、A【解
8、析】【分析】先利用已知条件得到x212x,利用整体代入得到原式,利用多项式乘多项式得到原式,再将x212x代入进而可求得答案【详解】解:,故选:A【考点】本题考查了整体代入的方法,整式乘法的运算法则,灵活运用整体思想及熟练掌握整式乘法的运算法则是解决本题的关键9、D【解析】【分析】根据单项式的乘法法则,乘号前面的数相乘,乘号后面的数相乘,再转化成科学记数法表示数,即可求出M,a的值【详解】解:=M=8,a=10故选D【考点】本题考查了单项式的乘法,同底数幂的乘法,科学记数法熟练掌握各个运算法则和科学记数法表示数的计算方法是解题的关键10、B【解析】【分析】根据多项式的乘法法则计算出的结果,然后
9、与比较即可【详解】解:=x2+2x-8=,m=2故选B【考点】此题考查了十字相乘法和整式的乘法,熟练掌握因式分解和整式的乘法是互为逆运算是解本题的关键二、填空题1、20【解析】【分析】先利用平方差公式:化简所求式子,再将已知式子的值代入求解即可【详解】将代入得:原式故答案为:20【考点】本题考查了利用平方差公式进行化简求值,熟记公式是解题关键另一个重要公式是完全平方公式:,这是常考知识点,需重点掌握2、2【解析】【分析】将(a1)(b1)利用多项式乘多项式法则展开,然后将ab=a+b+1代入合并即可得【详解】(a1)(b1)= abab+1,当ab=a+b+1时,原式=abab+1=a+b+1
10、ab+1=2,故答案为2【考点】本题考查了多项式乘多项式,解题的关键是掌握多项式乘多项式的运算法则及整体代入思想的运用3、x21【解析】【分析】根据规定的运算,直接代值后再根据平方差公式计算即可【详解】解:根据题意得:(x1)x=(x1)(x+1)=x21故答案为:x21【考点】本题考查了平方差公式,实数的运算,理解题目中的运算方法是解题关键4、a2+2ab+b2=(a+b)2【解析】【详解】试题分析:两个正方形的面积分别为a2,b2,两个长方形的面积都为ab,组成的正方形的边长为ab,面积为(ab)2,所以a22abb2(ab)2点睛:本题考查了运用完全平方公式分解因式,关键是理解题中给出的
11、各个图形之间的面积关系5、-3【解析】【分析】原式利用多项式乘以多项式法则计算,变形后,将m+n与mn的值代入计算即可求出值【详解】解:m+n=2,mn=-2,(1-m)(1-n)=1-(m+n)+mn=1-2-2=-3故答案为:-3【考点】本题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键三、解答题1、;2021【解析】【分析】先进行整式的化简求值运算,再将m、n数值代入求值即可【详解】当,n2020时,=2021【考点】本题考查了整式的混合运算和代数式求值,解答关键是按照相关法则进行计算2、14【解析】【分析】根据幂的运算性质,先化简代数式,然后整体代入即可求解【详解】解:= =32
12、-18=143、(1)2a2+10ab+8b2;(2)【解析】【分析】(1)把三条小路使花圃的面积变为一个矩形的面积,所以花圃的面积=(4a+2b-2a)(2a+4b-a),然后利用展开公式展开合并即可;(2)利用2S2-S1=7b2得到b=2a,则用a表示S1、S2,然后计算它们的比值【详解】解:(1)平移后图形为:(空白处为花圃的面积)所以花圃的面积=(4a+2b-2a)(2a+4b-a)=(2a+2b)(a+4b)=2a2+8ab+2ab+8b2=2a2+10ab+8b2;(2)S1=(4a+2b)(2a+4b)=8a2+20ab+8b2,S2=2a2+10ab+8b2;2S2-S1=7
13、b2,2(2a2+10ab+8b2)-(8a2+20ab+8b2)=7b2,b2=4a2,b=2a,S1=8a2+40a2+32a2=80a2,S2=2a2+20a2+32a2=54a2,【考点】本题考查了生活中的平移现象:在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移通过平移把不规则的图形变为规则图形也考查了代数式4、5050【解析】【详解】试题分析:分别将相邻的两个利用平方差公式进行简便计算,从而将原式转化为1到100的加法计算,从而得出答案试题解析:原式=(100+99)(100-99)+(98+97)(98-97)+(2+1)(2-1)=100+99+98+97+2+150505、,5【解析】【分析】原式去括号合并得到最简结果,再把a,b的值代入计算即可求出值【详解】解:当,时,原式【考点】此题考查了整式的混合运算-化简求值,熟练掌握单项式乘多项式法则、平方差公式、完全平方公式等是解本题的关键