1、人教版八年级数学上册第十五章分式综合练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若关于的分式方程有增根,则的值为()A2B3C4D52、已知关于的分式方程的解为正数,则的取值范围为()AB且CD且
2、3、已知关于x的分式方程无解,且关于y的不等式组有且只有三个偶数解,则所有符合条件的整数m的乘积为()A1B2C4D84、若数使关于的分式方程的解为正数,则的取值正确的是()ABCD5、一支部队排成a米长队行军,在队尾的战士要与最前面的团长联系,他用t1分钟追上了团长、为了回到队尾,他在追上团长的地方等待了t2分钟如果他从最前头跑步回到队尾,那么他需要的时间是()A分钟B分钟C分钟D分钟6、若分式的值为0,则x的值为A3BC3或D07、化简的结果为,则()A4B3C2D18、化简的结果为()ABCD9、已知,为实数且满足,设,若时,;若时,;若时,;若,则则上述四个结论正确的有()A1B2C3
3、D410、关于x的方程2+有增根,则k的值为()A3B3C3D2第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、计算:_2、填空:3、如图,标号为,的矩形不重叠地围成矩形,已知和能够重合,和能够重合,这四个矩形的面积都是5.,且(1)若a,b是整数,则的长是_;(2)若代数式的值为零,则的值是_4、已知m+n=-3.则分式的值是_5、如图,约定:上方相邻两数之和等于这两数下方箭头共同指向的数示例:即4+3=7,则(1)用含x的式子表示m_;(2)当y2时,n的值为_三、解答题(5小题,每小题10分,共计50分)1、观察以下等式:第1个等式:,第2个等式:,第3个等式:,
4、第4个等式:,第5个等式:,按照以上规律,解决下列问题:(1)写出第6个等式:_;(2)写出你猜想的第n个等式:_(用含n的等式表示),并证明2、先化简,再求值:-,其中a=(3-)0+-.3、解答下列各题:(1)解方程:(2)解不等式组:,并把解集表示在数轴上4、解方程:(1)(2)5、某商场在端午节来临之际用3000元购进A、B两种玩具110个,购买A玩具与购买B玩具的费用相同已知A玩具的单价是B玩具单价的1.2倍(1)求A、B两种玩具的单价各是多少?(2)若计划用不超过7000元的资金再次购进A、B两种玩具共260个,已知A、B两种玩具的进价不变求A种玩具最多能购进多少个?-参考答案-一
5、、单选题1、D【解析】【分析】根据分式方程有增根可求出,方程去分母后将代入求解即可.【详解】解:分式方程有增根,去分母,得,将代入,得,解得故选:D【考点】本题考查了分式方程的无解问题,掌握分式方程中增根的定义及增根产生的原因是解题的关键2、D【解析】【分析】解分式方程用k表示出x,根据解为正数及分式有意义的条件得到关于k的不等式组,解不等式组即可得到答案【详解】通分得:,x=2-k,的解为正数,且分式有意义,解得:且,故选:D【考点】本题考查分式方程与不等式的综合应用,解分式方程得到关于k的不等式组是解题关键,注意分式有意义的条件,避免漏解3、B【解析】【分析】分式方程无解的情况有两种,第一
6、种是分式方程化成整式方程后,整式方程无解,第二种是分式方程化成整式方程后有解,但是解是分式方程的增根,以此确定m的值,不等式组整理后求出解集,根据有且只有三个偶数解确定出m的范围,进而求出符合条件的所有m的和即可【详解】解:分式方程去分母得:,整理得:,分式方程无解的情况有两种,情况一:整式方程无解时,即时,方程无解,;情况二:当整式方程有解,是分式方程的增根,即x=2或x=6,当x=2时,代入,得:解得:得m=4当x=6时,代入,得:,解得:得m=2综合两种情况得,当m=4或m=2或,分式方程无解;解不等式,得:根据题意该不等式有且只有三个偶数解,不等式组有且只有的三个偶数解为8,6,4,4
7、m42,00,且1,解得:a6且a2故选:A【考点】此题考查了分式方程的解,始终注意分母不为0这个条件5、C【解析】【分析】根据题意得到队伍的速度为,队尾战士的速度为,可以得到他从最前头跑步回到队尾,那么他需要的时间是,化简即可求解【详解】解:由题意得:分钟故选:C【考点】本题考查了根据题意列分式计算,理解题意正确列出分式是解题关键6、A【解析】【分析】根据分式的值为零的条件可以求出x的值【详解】由分式的值为零的条件得x-3=0,且x+30,解得x=3故选A【考点】本题考查了分式值为0的条件,具备两个条件:(1)分子为0;(2)分母不为0这两个条件缺一不可7、A【解析】【分析】根据分式的运算法
8、则即可求出答案【详解】解:依题意得:,故选:【考点】本题考查分式的运算,解题的关键是熟练运用分式的运算法则8、B【解析】【分析】根据同分母的分式减法法则进行化简即可得到结果【详解】解:,故选:【考点】此题主要考查同分母分式的减法,熟练掌握运算法则是解答此题的关键9、B【解析】【分析】先求出对于当时,可得,所以正确;对于当时,不能确定的正负,所以错误;对于当时,不能确定的正负,所以错误;对于当时,正确【详解】,当时,所以,正确;当时,如果,则此时,错误;当时,如果,则此时,错误;当时,正确故选B【考点】本题关键在于熟练掌握分式的运算,并会判断代数式的正负10、D【解析】【分析】根据增根的定义可求
9、出x的值,把方程去分母后,再把求得的x的值代入计算即可.【详解】解:原方程有增根,最简公分母x30,解得x3,方程两边都乘(x3),得:x12(x3)+k,当x3时,k2,符合题意,故选D【考点】本题考查的是分式方程的增根,在分式方程变形的过程中,产生的不适合原方程的根叫做分式方程的增根.增根使最简公分母等于0,不适合原分式方程,但是适合去分母后的整式方程二、填空题1、3【解析】【分析】根据零指数幂和负指数幂的意义计算【详解】解:,故答案为:3【考点】本题考查了整数指数幂的运算,熟练掌握零指数幂和负指数幂的意义是解题关键2、#-y+x【解析】【分析】由题意知,根据分式的性质,分子和分母同时乘以
10、或除以(不为0的数或整式),分式值不变,进行化简即可【详解】解:由题意可知故答案为:【考点】本题考查了因式分解,分式的性质,解题的关键在于正确的化简计算3、 【解析】【分析】(1)根据图象表示出PQ即可;(2)根据分解因式可得,继而求得,根据这四个矩形的面积都是5,可得,再进行变形化简即可求解【详解】(1)和能够重合,和能够重合,故答案为:;(2),或,即(负舍)或这四个矩形的面积都是5,【考点】本题考查了代数式及其分式的化简求值,准确理解题意,熟练掌握知识点是解题的根据4、,【解析】【分析】先计算括号内的,再将除法转化为乘法,最后将m+n=-3代入即可.【详解】解:原式=,m+n=-3,代入
11、,原式=.【考点】本题考查了分式的化简求值,解题的关键是掌握分式的运算法则.5、 【解析】【分析】(1)根据题意,可以用含x的式子表示出m;(2)根据图形,可以用x的代数式表示出y,列出关于x的分式方程,从而可以求得x的值,进而得到n的值【详解】解:(1)由图可得, 故答案为:;(2),解得,故答案为:【考点】本题考查了分式的加减、解分式方程,解答本题的关键是明确题意,列出相应的代数式及分式方程及求出方程的解三、解答题1、(1);(2),证明见解析【解析】【分析】(1)根据观察到的规律写出第6个等式即可;(2)根据观察到的规律写出第n个等式,然后根据分式的运算对等式的左边进行化简即可得证【详解
12、】(1)观察可知第6个等式为:,故答案为:;(2)猜想:,证明:左边=1,右边=1,左边=右边,原等式成立,第n个等式为:,故答案为【考点】本题考查了规律题,通过观察、归纳、抽象出等式的规律与序号的关系是解题的关键2、,;.【解析】【分析】根据分式的运算法则及混合运算顺序先把分式化为最简分式,再求得a的值,代入即可求解.【详解】解:原式=-=-=-=.a=(3-)0+-=1+3-1=3,原式=-.【考点】本题考查了分式的化简求值,把分式化为最简分式及正确求得a的值是解决问题的关键.3、(1)方程无解;(2),数轴见解析【解析】【分析】(1)解分式方程,先去分母,然后去括号,移项,合并同类项,系
13、数化1,注意结果要进行检验;(2)解一元一次不等式组,分别求出各不等式的解集,再在数轴上表示出来即可【详解】解:(1)去分母得:,去括号得:,移项合并同类项得:,系数化为1得:,经检验时,则为原方程的增根,原分式方程无解 (2),由得,由得,不等式组的解集为:,在数轴上表示如图:【考点】本题考查解分式方程和解一元一次不等式组,掌握运算顺序和计算法则正确计算是解题关键4、 (1)(2)方程无解【解析】【分析】(1)先去分母、去括号,然后移项合并,系数化为1,最后进行检验;(2)先去分母、提公因式,然后去括号,移项合并,最后进行检验(1)解:去分母得:去括号得:移项合并得:系数化为1得:经检验,是
14、分式方程的解分式方程的解为(2)解:去分母得:因式分解得:去括号得:解得:经检验,是分式方程的增根分式方程无解【考点】本题考查了解分式方程解题的关键在于正确计算求解是否对解进行检验是易错点5、 (1)A种玩具单价为30元/个,B种玩具单价为25元/个(2)100个【解析】【分析】(1)先设B种玩具单价为x元/个,则A种玩具单价为1.2x元/个,根据等量关系购进A玩具数量+购进B玩具数量=110,列分式方程,求解即可;(2)设购进A种玩具m个,则购进B种玩具个,根据A总价+B总价不超过7000元列出一元一次不等式,求解即可(1)解:设B种玩具单价为x元/个,则A种玩具单价为1.2x元/个,根据题意,得 解得:,经检验,是原方程的解,且符合题意, 答:A种玩具单价为30元/个,B种玩具单价为25元/个(2)设购进A种玩具m个,则购进B种玩具个,依题意,得:,解得:答:A种玩具最多能购进100个【考点】本题考查了分式方程的应用之购物问题及一元一次不等式的实际应用,解题的关键是找到等量关系或者不等关系,注意分式方程的应用题也是需要检验的