1、八年级数学上册第十二章全等三角形专项练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在和中,则下列结论中错误的是()ABCDE为BC中点2、如图,在和中,线段BC的延长线交DE于点F,连接AF若
2、,则线段EF的长度为()A4BC5D3、如图,锐角ABC的两条高BD、CE相交于点O,且CEBD,若CBD20,则A的度数为()A20B40C60D704、如图是作的作图痕迹,则此作图的已知条件是()A已知两边及夹角B已知三边C已知两角及夹边D已知两边及一边对角5、如图,在中,D是上一点,于点E,连接,若,则等于()ABCD6、有一个小口瓶(如图所示),想知道它的内径是多少,但是尺子不能伸到里边直接测,于是拿两根长度相同的细木条,把两根细木条的中点固定在一起,木条可以绕中点转动,这样只要量出AB的长,就可以知道玻璃瓶的内径是多少,那么OABOCD理由是()A边角边B角边角C边边边D角角边7、如
3、图,在ABC和ABC中,ABCABC,AABC,则,满足关系()ABCD8、如图,ABC的三边AB,BC,CA长分别是20,30,40,其三条角平分线将ABC分为三个三角形,则SABO:SBCO:SCAO等于()A1:1:1B1:2:3C2:3:4D3:4:59、如图,在和中,点,在同一直线上,只添加一个条件,能判定的是()ABCD10、如图,C为线段AE上一动点(不与点,重合),在AE同侧分别作等边三角形ABC和等边三角形CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连结PQ以下结论错误的是()AAOB=60BAP=BQCPQAEDDE=DP第卷(非选择题 70分)二、
4、填空题(5小题,每小题4分,共计20分)1、如图,ABC中,ACB=90,AC=12,BC=16点P从A点出发沿ACB路径向终点运动,终点为B点;点Q从B点出发沿BCA路径向终点运动,终点为A点点P和Q分别以2和6的运动速度同时开始运动,两点都要到相应的终点时才能停止运动,在某时刻,分别过P和Q作PEl于E,QFl于F若要PEC与QFC全等,则点P的运动时间为_2、如图,的度数为_3、如图,在四边形中,的延长线与、相邻的两个角的平分线交于点E,若,则的度数为_4、如图,的三边 的长分别为,其三条角平分线交于点,则=_5、如图,在与中,若,则的度数为_三、解答题(5小题,每小题10分,共计50分
5、)1、如图,和都是等边三角形,连接与,延长交于点H(1)证明:;(2)求的度数;(3)连接,求证:平分2、如图,在中,点在的延长线上,于点,若,求证:3、如图 AB=AC,CDAB于D,BEAC于E,BE与CD相交于点O(1)求证AD=AE;(2)连接OA,BC,试判断直线OA,BC的关系并说明理由4、如图,A,B,C,D依次在同一条直线上,BF与EC相交于点M求证:5、如图,已知中,是内一点,且,试说明的理由.-参考答案-一、单选题1、D【解析】【分析】首先证明,推出,由,推出,推出,即可一一判断【详解】解:,和为直角三角形,在和中, , , , 故A、B、C正确,故选:D【考点】本题主要考
6、查全等三角形的判定和性质,解题的关键是熟练掌握全等三角形的判定和性质2、B【解析】【分析】证明,根据全等三角形对应边相等,得到,由解得,继而解得,最后由解答【详解】解:,故选:B【考点】本题考查全等三角形的判定与性质、线段的和差等知识,是重要考点,掌握相关知识是解题关键3、B【解析】【分析】由BD、CE是高,可得BDC=CEB=90,可求BCD70,可证RtBECRtCDB(HL),得出BCDCBE70即可【详解】解:BD、CE是高,CBD20,BDC=CEB=90,BCD180902070,在RtBEC和RtCDB中,RtBECRtCDB(HL),BCDCBE70,A180707040故选:
7、B【考点】本题考查三角形高的定义,三角形全等判定与性质,三角形内角和公式,掌握三角形高的定义,三角形全等判定与性质,三角形内角和公式是解题关键4、C【解析】【分析】观察的作图痕迹,可得此作图的条件.【详解】解:观察的作图痕迹,可得此作图的已知条件为:,及线段AB,故已知条件为:两角及夹边,故选C.【考点】本题主要考查三角形作图及三角形全等的相关知识.5、C【解析】【分析】证明RtBCDRtBED(HL),由全等三角形的性质得出CD=DE,则可得出答案【详解】解:,在和中,cm,cm故选:C【考点】本题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定方法是解题的关键6、A【解析】【详解】解
8、:根据SAS得:OABODC故选A.7、C【解析】【分析】根据,证得,=,再利用BC得到=,再根据三角形内角和定理即可得到结论.【详解】,,ACB=,=,BC,=,故选:C.【考点】此题考查旋转图形的性质,等腰三角形的性质,两直线平行内错角相等,三角形的内角和定理.8、C【解析】【分析】过点作于点,作于点,作于点,先根据角平分线的性质可得,再根据三角形的面积公式即可得【详解】解:如图,过点作于点,作于点,作于点,是的三条角平分线,故选:C【考点】本题考查了角平分线的性质,熟练掌握角平分线的性质是解题关键9、B【解析】【分析】根据三角形全等的判定做出选择即可【详解】A、,不能判断,选项不符合题意
9、;B、,利用SAS定理可以判断,选项符合题意;C、,不能判断,选项不符合题意;D、,不能判断,选项不符合题意;故选:B【考点】本题考查三角形全等的判定,根据SSS、SAS、ASA、AAS判断三角形全等,找出三角形全等的条件是解答本题的关键10、D【解析】【分析】利用等边三角形的性质,BCDE,再根据平行线的性质得到CBE=DEO,于是AOB=DAC+BEC=BEC+DEO=DEC=60,得出A正确;根据CQBCPA(ASA),得出B正确;由ACDBCE得CBE=DAC,加之ACB=DCE=60,AC=BC,得到CQBCPA(ASA),再根据PCQ=60推出PCQ为等边三角形,又由PQC=DCE
10、,根据内错角相等,两直线平行,得出C正确;根据CDE=60,DQE=ECQ+CEQ=60+CEQ,可知DQECDE,得出D错误【详解】解:等边ABC和等边CDE,AC=BC,CD=CE,ACB=DCE=60,ACB+BCD=DCE+BCD,即ACD=BCE,在ACD与BCE中,ACDBCE(SAS),CBE=DAC,又ACB=DCE=60,BCD=60,即ACP=BCQ,又AC=BC,在CQB与CPA中,CQBCPA(ASA),CP=CQ,又PCQ=60可知PCQ为等边三角形,PQC=DCE=60,PQAE,故C正确,CQBCPA,AP=BQ,故B正确,AD=BE,AP=BQ,AD-AP=BE
11、-BQ,即DP=QE,DQE=ECQ+CEQ=60+CEQ,CDE=60,DQECDE,故D错误;ACB=DCE=60,BCD=60,等边DCE,EDC=60=BCD,BCDE,CBE=DEO,AOB=DAC+BEC=BEC+DEO=DEC=60,故A正确故选:D【考点】本题考查了等边三角形的性质、全等三角形的判定与性质,利用旋转不变性,解题的关键是找到不变量二、填空题1、1或3.5或12【解析】【分析】分4种情况求解:P在AC上,Q在BC上,推出方程6-t=8-3t,P、Q都在AC上,此时P、Q重合,得到方程6-t=3t-8,Q在AC上,P在BC上,Q在AC时,此时不存在,当Q到A点,与A重
12、合,P在BC上时【详解】解:PEC与QFC全等,斜边CP=CQ,有四种情况:P在AC上,Q在BC上,CP=12-2t,CQ=16-6t,12-2t=16-6t,t=1;P、Q都在AC上,此时P、Q重合,CP=12-2t=6t-16,t=3.5;P到BC上,Q在AC时,此时不存在;理由是:286=,122=6,即Q在AC上运动时,P点也在AC上运动;当Q到A点(和A重合),P在BC上时,CP=CQ=AC=12CP=12-2t,2t-12=12,t=12符合题意;答:点P运动1或3.5或12时,PEC与QFC全等【考点】本题主要考查对全等三角形的性质,解一元一次方程等知识点的理解和掌握,能根据题意
13、得出方程是解此题的关键2、【解析】【分析】根据全等三角形的性质求出EADCAB,求出DABEAC=50,即可得到BAC的度数【详解】解:ABCADE,EADCAB,EADCADCABCAD,EACDAB,EAB125,CAD25,DABEAC=(12525)50,BAC50+2575故答案为:75【考点】本题考查的是全等三角形的性质,掌握全等三角形的对应角相等是解题的关键3、【解析】【分析】先证明RtCDARtCBA得到,再由角平分线的定义求出EDC=45,最后根据三角形内角和定理求解即可【详解】解:,CDA=CBA=90,在RtCDA和RtCBA中,RtCDARtCBA(HL),DE平分与A
14、DC相邻的角,ADC=90,EDC=45,CED=180-DAE-ADC-EDC=15,故答案为:15【考点】本题主要考查了全等三角形的性质与判定,三角形内角和定理,角平分线的定义,熟知全等三角形的性质与判定条件是解题的关键4、【解析】【分析】首先过点O作ODAB于点D,作OEAC于点E,作OFBC于点F,由OA,OB,OC是ABC的三条角平分线,根据角平分线的性质,可得OD=OE=OF,又由ABC的三边AB、BC、CA长分别为40、50、60,即可求得SABO:SBCO:SCAO的值【详解】解:过点O作ODAB于点D,作OEAC于点E,作OFBC于点F,OA,OB,OC是ABC的三条角平分线
15、,OD=OE=OF,ABC的三边AB、BC、CA长分别为40、50、60,SABO:SBCO:SCAO=(ABOD):(BCOF):(ACOE)=AB:BC:AC=40:50:60=故答案为:【考点】此题考查了角平分线的性质此题难度不大,注意掌握辅助线的作法,注意数形结合思想的应用5、40【解析】【分析】先利用HL定理证明RtABCRtDEF,得出D的度数,再根据直角三角形两锐角互余即可得出的度数【详解】解:在RtABC与RtDEF中,B=E=90,AC=DF,AB=DE,RtABCRtDEF(HL)D=A=50,DFE=90-D=90-50=40故答案为:40【考点】此题主要考查直角三角形全
16、等的HL定理理解斜边和一组直角边对应相等的两个直角三角形全等是解题关键三、解答题1、 (1)见解析(2)60(3)见解析【解析】【分析】(1)由ABD和BCE都是等边三角形得BABD,BEBC,ABDEBC60,所以ABEDBC60DBE,即可根据全等三角形的判定定理“SAS”证明ABEDBC,得AEDC;(2)由ABEDBC得BAEBDC,因为BADBDA60,所以HADHDA120,所以AHD60;(3)作BFHA于点F,BGHC交HC的延长线于点G,则AFBBFHG90,即可证明BAFBDG,则BFBG,根据“到角的两边距离相等的点在角的平分线上”即可证明HB平分AHC(1)证明:如图1
17、,ABD和BCE都是等边三角形,BABD,BEBC,ABDEBC60,ABEDBC60DBE,在ABE和DBC中,ABEDBC(SAS),AEDC(2)解:如图1,由(1)得ABEDBC,BAEBDC,BADBDA60,HADHADHADBDCBDAHADBAEBDABADBDA120,AHD180(HADHDA)60(3)证明:如图2,作BFHA于点F,BGHC交HC的延长线于点G,则AFBBFHG90,由ABEDBC得BAFBDG,在BAF和BDG中,BAFBDG(AAS),BFBG,点B在AHC的平分线上,HB平分AHC【考点】此题考查等边三角形的性质、全等三角形的判定与性质、到角的两边
18、距离相等的点在角的平分线上等知识,证明三角形全等是解题的关键2、证明见解析【解析】【分析】利用AAS证明,根据全等三角形的性质即可得到结论【详解】证明:,ADE=90,ACB=ADE,在和中 ,AE=AB,AC=AD,AE-AC=AB-AD,即EC=BD【考点】本题考查全等三角形的判定和性质,解题的关键是熟练掌握基本知识3、(1)证明见解析;(2)互相垂直,证明见解析【解析】【分析】(1)根据AAS推出ACDABE,根据全等三角形的性质得出即可;(2)证RtADORtAEO,推出DAO=EAO,根据等腰三角形的性质推出即可【详解】(1)证明:CDAB,BEAC,ADC=AEB=90,ACD和A
19、BE中,ACDABE(AAS),AD=AE(2)猜想:OABC证明:连接OA、BC,CDAB,BEAC,ADC=AEB=90在RtADO和RtAEO中,RtADORtAEO(HL)DAO=EAO,又AB=AC,OABC4、见解析【解析】【分析】由AB=CD,得AC=BD,再利用SAS证明AECDFB,即可得结论【详解】证明:,在和中,【考点】本题主要考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键5、详见解析【解析】【分析】先证明,再利用全等三角形的性质得到,然后利用等腰三角形三线合一的性质,即可证明.【详解】证明:在与中,(全等三角形的对应角相等)(已知)(等腰三角形的三线合一)【考点】本题考查全等三角形的判定和性质、等腰三角形的性质等知识,解题的关键是正确寻找全等三角形解决问题和等腰三角形三线合一性质的运用.