收藏 分享(赏)

2022年人教版九年级数学上册第二十四章圆同步训练试卷(含答案详解).docx

上传人:a**** 文档编号:696151 上传时间:2025-12-13 格式:DOCX 页数:29 大小:597.77KB
下载 相关 举报
2022年人教版九年级数学上册第二十四章圆同步训练试卷(含答案详解).docx_第1页
第1页 / 共29页
2022年人教版九年级数学上册第二十四章圆同步训练试卷(含答案详解).docx_第2页
第2页 / 共29页
2022年人教版九年级数学上册第二十四章圆同步训练试卷(含答案详解).docx_第3页
第3页 / 共29页
2022年人教版九年级数学上册第二十四章圆同步训练试卷(含答案详解).docx_第4页
第4页 / 共29页
2022年人教版九年级数学上册第二十四章圆同步训练试卷(含答案详解).docx_第5页
第5页 / 共29页
2022年人教版九年级数学上册第二十四章圆同步训练试卷(含答案详解).docx_第6页
第6页 / 共29页
2022年人教版九年级数学上册第二十四章圆同步训练试卷(含答案详解).docx_第7页
第7页 / 共29页
2022年人教版九年级数学上册第二十四章圆同步训练试卷(含答案详解).docx_第8页
第8页 / 共29页
2022年人教版九年级数学上册第二十四章圆同步训练试卷(含答案详解).docx_第9页
第9页 / 共29页
2022年人教版九年级数学上册第二十四章圆同步训练试卷(含答案详解).docx_第10页
第10页 / 共29页
2022年人教版九年级数学上册第二十四章圆同步训练试卷(含答案详解).docx_第11页
第11页 / 共29页
2022年人教版九年级数学上册第二十四章圆同步训练试卷(含答案详解).docx_第12页
第12页 / 共29页
2022年人教版九年级数学上册第二十四章圆同步训练试卷(含答案详解).docx_第13页
第13页 / 共29页
2022年人教版九年级数学上册第二十四章圆同步训练试卷(含答案详解).docx_第14页
第14页 / 共29页
2022年人教版九年级数学上册第二十四章圆同步训练试卷(含答案详解).docx_第15页
第15页 / 共29页
2022年人教版九年级数学上册第二十四章圆同步训练试卷(含答案详解).docx_第16页
第16页 / 共29页
2022年人教版九年级数学上册第二十四章圆同步训练试卷(含答案详解).docx_第17页
第17页 / 共29页
2022年人教版九年级数学上册第二十四章圆同步训练试卷(含答案详解).docx_第18页
第18页 / 共29页
2022年人教版九年级数学上册第二十四章圆同步训练试卷(含答案详解).docx_第19页
第19页 / 共29页
2022年人教版九年级数学上册第二十四章圆同步训练试卷(含答案详解).docx_第20页
第20页 / 共29页
2022年人教版九年级数学上册第二十四章圆同步训练试卷(含答案详解).docx_第21页
第21页 / 共29页
2022年人教版九年级数学上册第二十四章圆同步训练试卷(含答案详解).docx_第22页
第22页 / 共29页
2022年人教版九年级数学上册第二十四章圆同步训练试卷(含答案详解).docx_第23页
第23页 / 共29页
2022年人教版九年级数学上册第二十四章圆同步训练试卷(含答案详解).docx_第24页
第24页 / 共29页
2022年人教版九年级数学上册第二十四章圆同步训练试卷(含答案详解).docx_第25页
第25页 / 共29页
2022年人教版九年级数学上册第二十四章圆同步训练试卷(含答案详解).docx_第26页
第26页 / 共29页
2022年人教版九年级数学上册第二十四章圆同步训练试卷(含答案详解).docx_第27页
第27页 / 共29页
2022年人教版九年级数学上册第二十四章圆同步训练试卷(含答案详解).docx_第28页
第28页 / 共29页
2022年人教版九年级数学上册第二十四章圆同步训练试卷(含答案详解).docx_第29页
第29页 / 共29页
亲,该文档总共29页,全部预览完了,如果喜欢就下载吧!
资源描述

1、人教版九年级数学上册第二十四章圆同步训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,已知在中,是直径,则下列结论不一定成立的是()ABCD到、的距离相等2、如图,在ABCD中,为的直径,O和相切

2、于点E,和相交于点F,已知,则的长为()ABCD23、如图,在ABC中,ACB90,ACBC,AB4cm,CD是中线,点E、F同时从点D出发,以相同的速度分别沿DC、DB方向移动,当点E到达点C时,运动停止,直线AE分别与CF、BC相交于G、H,则在点E、F移动过程中,点G移动路线的长度为()A2BC2D4、 “圆材埋壁”是我国古代著名数学著作九章算术中的一个问题,“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”用现在的数学语言表述是:如图所示,CD为O的直径,弦ABCD,垂足为E,CE为1寸,AB为10寸,求直径CD的长依题意,CD长为()A寸B13寸C25寸D26

3、寸5、以原点O为圆心的圆交x轴于A、B两点,交y轴的正半轴于点C,D为第一象限内O上的一点,若DAB25,则OCD()A50B40C70D306、如图,、分别切于点、,点为优弧上一点,若,则的度数为()ABCD7、如图,五边形是O的内接正五边形,则的度数为()ABCD8、如图,在四边形ABCD中,则AB()A4B5CD9、如图是一圆锥的侧面展开图,其弧长为,则该圆锥的全面积为 A60B85C95D16910、已知中,点P为边AB的中点,以点C为圆心,长度r为半径画圆,使得点A,P在C内,点B在C外,则半径r的取值范围是()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20

4、分)1、如图,在甲,以点为圆心,的长为半径作圆,交于点,交于点,阴影部分的面积为_(结果保留)2、如图,O是ABC的外接圆,A60,BC6,则O的半径是_3、如图,已知是的直径,是的切线,连接交于点,连接若,则的度数是_4、在O中,若弦垂直平分半径,则弦所对的圆周角等于_5、如图,已知是的直径,且,弦,点是弧上的点,连接、,若,则的长为_三、解答题(5小题,每小题10分,共计50分)1、已知P为O上一点,过点P作不过圆心的弦PQ,在劣弧PQ和优弧PQ上分别有点A、B(不与P、Q重合),连接AP、BP,若APQ=BPQ(1)如图1,当APQ=45,AP=1,BP=2时,求O的半径。(2)如图2,

5、连接AB,交PQ于点M,点N在线段PM上(不与P、M重合),连接ON、OP,设NOP=,OPN=,若AB平行于ON,探究与的数量关系。2、如图,已知的直径为,于点,与相交于点,在上取一点,使得(1)求证:是的切线;(2)填空:当,时,则_连接,当的度数为_时,四边形为正方形3、如图,AB是O的直径,弦CDAB,垂足为E,如果AB10,CD8,求线段AE的长4、在中,已知O经过点C,且与相切于点D(1)在图中作出O;(要求:尺规作图,不写作法,保留作图痕迹)(2)若点D是边上的动点,设O与边、分别相交于点E、F,求的最小值5、如图,分别切、于点、切于点,交于点与不重合)(1)用直尺和圆规作出;(

6、保留作图痕迹,不写作法)(2)若半径为1,求的长-参考答案-一、单选题1、A【解析】【分析】根据圆心角、弧、弦之间的关系即可得出答案【详解】在中,弦弦,则其所对圆心角相等,即,所对优弧和劣弧分别相等,所以有,故B项和C项结论正确,AO=DO=BO=CO(SSS)可得出点到弦,的距离相等,故D项结论正确;而由题意不能推出,故A项结论错误故选:A【考点】此题主要考查圆的基本性质,解题的关键是熟知圆心角、弧、弦之间的关系2、C【解析】【分析】首先求出圆心角EOF的度数,再根据弧长公式,即可解决问题【详解】解:如图连接OE、OF,CD是O的切线,OECD,OED=90,四边形ABCD是平行四边形,C=

7、60,A=C=60,D=120,OA=OF,A=OFA=60,DFO=120,EOF=360-D-DFO-DEO=30,的长故选:C【考点】本题考查切线的性质、平行四边形的性质、弧长公式等知识,解题的关键是求出圆心角的度数,记住弧长公式3、D【解析】【分析】【详解】解:如图,CACB,ACB90,ADDB,CDAB,ADECDF90,CDADDB,在ADE和CDF中,ADECDF(SAS),DAEDCF,AEDCEG,ADECGE90,A、C、G、D四点共圆,点G的运动轨迹为弧CD,AB4,ABAC,AC2,OAOC,DADC,OAOC,DOAC,DOC90,点G的运动轨迹的长为故选:D4、D

8、【解析】【分析】连结AO,根据垂径定理可得:,然后设O半径为R,则OER1再由勾股定理,即可求解【详解】解:连结AO, CD为直径,CDAB, 设O半径为R,则OER1RtAOE中,OA2AE2+OE2, R252+(R-1)2,R13,CD2R26(寸)故选:D【考点】本题主要考查了垂径定理,勾股定理,熟练掌握垂径定理是解题的关键5、C【解析】【分析】根据圆周角定理求出DOB,根据等腰三角形性质求出OCD=ODC,根据三角形内角和定理求出即可【详解】解:连接OD,DAB=25,BOD=2DAB=50,COD=90-50=40,OC=OD,OCD=ODC=(180-COD)=70,故选:C【考

9、点】本题考查了圆周角定理,等腰三角形性质,三角形内角和定理的应用,主要考查学生的推理能力,题目比较典型,难度适中6、C【解析】【分析】要求ACB的度数,只需根据圆周角定理构造它所对的弧所对的圆心角,即连接OA,OB;再根据切线的性质以及四边形的内角和定理即可求解【详解】解:连接OA,OB,PA、PB分别切O于点A、B,OAAP,OBBP,PAO=PBO=90,AOB+APB=180,AOB=2ACB,ACB=APB,3ACB=180,ACB=60,故选:C【考点】此题考查了切线的性质,圆周角定理,以及四边形的内角和,熟练掌握切线的性质是解本题的关键7、D【解析】【分析】先根据正五边形的内角和求

10、出每个内角,再根据等边对等角得出ABE=AEB,然后利用三角形内角和求出ABE=即可【详解】解:五边形是O的内接正五边形,A=ABC=,AB=AE,ABE=AEB,ABE=,故选:D【考点】本题考查圆内接正五边形的性质,等腰三角形性质,三角形内角和公式,角的和差计算,掌握圆内接正五边形的性质,等腰三角形性质,三角形内角和公式,角的和差计算是解题关键8、D【解析】【分析】延长AD,BC交于点E,则E=30,先在RtCDE中,求得CE的长,然后在RtABE中,根据E的正切函数求得AB的长【详解】如图,延长AD,BC交于点E,则E=30,在RtCDE中,CE=2CD=6(30锐角所对直角边等于斜边的

11、一半),BE=BC+CE=8,在RtABE中,AB=BEtanE=8=.故选D.【考点】本题考查了解直角三角形,特殊角的三角函数值,解此题的关键在于构造一个直角三角形,然后利用锐角三角函数进行解答.9、B【解析】【分析】设圆锥的底面圆的半径为r,扇形的半径为R,先根据弧长公式得到=10,解得R=12,再利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长得到2r=10,解得r=5,然后计算底面积与侧面积的和【详解】设圆锥的底面圆的半径为r,扇形的半径为R,根据题意得=10,解得R=12,2r=10,解得r=5,所以该圆锥的全面积=52+1012=85故选B【考点】本题考查了圆锥的计算

12、:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长10、D【解析】【分析】根据勾股定理,得AB=5,由P为AB的中点,得CP=,要使点A,P在C内,r3,r4,从而确定r的取值范围.【详解】点A在C内,r3,点B在C外,r4,故选:D.【考点】本题考查了点和圆的位置关系,利用数形结合思想是解题的关键.二、填空题1、【解析】【分析】连接BE,根据正切的定义求出A,根据扇形面积公式、三角形的面积公式计算即可【详解】解:连接BE, 在RtABC中,ABC90,tanA,A60,BABE,ABE为等边三角形,ABE30,EBC30,阴影部分的面积22故答案为【考点

13、】本题考查的是扇形面积计算、等边三角形的判定和性质,掌握扇形面积公式是解题的关键2、6【解析】【分析】作直径CD,如图,连接BD,根据圆周角定理得到CBD90,D60,然后利用含30度的直角三角形三边的关系求出CD,从而得到O的半径【详解】解:作直径CD,如图,连接BD,CD为O直径,CBD90,DA60,BDBC66,CD2BD12,OC6,即O的半径是6故答案为6【考点】本题主要考查圆周角的性质,解决本题的关键是要熟练掌握圆周角的性质.3、25【解析】【分析】先由切线的性质可得OAC=90,再根据三角形的内角和定理可求出AOD=50,最后根据“同弧所对的圆周角等于圆心角的一半”即可求出B的

14、度数【详解】解:是的切线,OAC=90,AOD=50,B=AOD=25故答案为:25【考点】本题考查了切线的性质和圆周角定理,掌握圆周角定理是解题的关键4、120或60【解析】【分析】根据弦垂直平分半径及OB=OC证明四边形OBAC是矩形,再根据OB=OA,OE=求出BOE=60,即可求出答案.【详解】设弦垂直平分半径于点E,连接OB、OC、AB、AC,且在优弧BC上取点F,连接BF、CF,OB=AB,OC=AC,OB=OC,四边形OBAC是菱形,BOC=2BOE,OB=OA,OE=,cosBOE=,BOE=60,BOC=BAC=120,BFC=BOC=60, 弦所对的圆周角为120或60,故

15、答案为:120或60.【考点】此题考查圆的基本知识点:圆的垂径定理,同圆的半径相等的性质,圆周角定理,菱形的判定定理及性质定理,锐角三角函数,熟练掌握圆的各性质定理是解题的关键.5、9【解析】【分析】连接OC和OE,由同弧所对的圆周角等于圆心角的一半求出COB=60,再在COH中求出CH,最后由垂径定理求出CD【详解】解:连接OC和OE,如下图所示:由同弧所对的圆周角等于圆心角的一半可知,A=EOB,D=COE,A+D=30,EOB+COE=COB=30,COB=60,CDAB,COH为30,60,90的三角形,其三边之比为,CH=,CD=2CH=9,故答案为:9【考点】本题考查了圆周角定理及

16、垂径定理等相关知识点,本题的关键是求出COB=60三、解答题1、(1);(2)+2=90,见解析【解析】【分析】(1)连接AB,由已知得到APB=APQ+BPQ=90,根据圆周角定理证得AB是O的直径,然后根据勾股定理求得直径,即可求得半径;(2)连接OA、OB、OQ,由证得APQ=BPQ,即可证得OQON,然后根据三角形内角和定理证得2OPN+PON+NOQ=180,即可证得+2=90【详解】(1)连接AB,APQ=BPQ=45,APB=APQ+BPQ=90,AB是O的直径,AB=,O的半径为;(2)+2=90,证明:连接OA、OB、OQ,APQ=BPQ, ,AOQ=BOQ,OA=OB,OQ

17、AB,ONAB,NOOQ,NOQ=90,OP=OQ,OPN=OQP,OPN+OQP+PON+NOQ=180,2OPN+PON+NOQ=180,NOP+2OPN=90,NOP=,OPN=,+2=90【解答】解:【点评】本题考查了圆周角定理,垂径定理,熟练掌握性质定理是解题的关键2、(1)详见解析;(2)10;【解析】【分析】(1)连接OD,证明,得到,根据切线的判定定理证明;(2)利用等腰三角形的性质证明E是AC中点,再利用中位线定理得到,再用勾股定理求出OE,从而得到BC;添加条件,先通过四个边相等的四边形是菱形,证明四边形AODE是菱形,再加上一个直角就是正方形了【详解】解:(1)证明:如图

18、,连接,在和中,OD是半径,DE是的切线;(2)证明:,,,即E是AC中点,O是AB中点,在中,BC=2OE=10,故答案是:10;当时,四边形AODE为正方形,证明:,是等腰直角三角形,AB=AC,由(2)得AO=AE,AO=DO=AE=DE,四边形AODE是菱形,四边形AODE是正方形,故答案是:【考点】本题考查切线的证明,三角形中位线定理,正方形的证明,解题的关键是熟练掌握这些几何的性质定理并结合题目条件进行证明3、2【解析】【分析】连接OC,利用直径AB=10,则OC=OA=5,再由CDAB,根据垂径定理得CE=DE=CD=4,然后利用勾股定理计算出OE,再利用AE=OA-OE进行计算

19、即可【详解】连接OC,如图,AB是O的直径,AB10,OCOA5,CDAB,CEDECD84,在RtOCE中,OC5,CE4,OE3,AEOAOE532【考点】本题考查了垂径定理,掌握垂径定理及勾股定理是关键4、 (1)见详解(2)【解析】【分析】(1)连接CD,用尺规作图,作线段CD的垂直平分线,找到线段CD的中点O,然后以O为圆心,为半径主要作圆即为所作圆(2)过点C作,根据点到直线的距离,垂线段最短可知,点CD为圆的直径时,此时圆的直径最短,根据面积法可得出因为EF也为圆的直径,所以可得出EF最最小值为(1)如图所示,为所作圆(2)如图,作于点D,当CD为过的圆心点O时,此时圆的直径最短EF为的直径,此时EF的长为故EF的最小值为:【考点】本题主要考查了尺规作图,勾股定理,三角形面积求斜边上的高,垂线段最短等知识点的应用,熟练掌握点到直线的距离垂线段最短这性质定理是解此题的关键5、(1)见解析;(2)【解析】【分析】(1)以A为圆心,为半径画弧交于,作直线交于点,直线即为所求(2)设,利用勾股定理构建方程即可解决问题【详解】解:(1)如图,直线即为所求(2)连接,是的内切圆,是切点,四边形是矩形,四边形是正方形,设,在中,【考点】本题考查作图复杂作图,切线的性质,勾股定理等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 语文

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1