收藏 分享(赏)

2022年人教版九年级数学上册第二十四章圆专项攻克试题(含解析).docx

上传人:a**** 文档编号:696087 上传时间:2025-12-13 格式:DOCX 页数:30 大小:730.31KB
下载 相关 举报
2022年人教版九年级数学上册第二十四章圆专项攻克试题(含解析).docx_第1页
第1页 / 共30页
2022年人教版九年级数学上册第二十四章圆专项攻克试题(含解析).docx_第2页
第2页 / 共30页
2022年人教版九年级数学上册第二十四章圆专项攻克试题(含解析).docx_第3页
第3页 / 共30页
2022年人教版九年级数学上册第二十四章圆专项攻克试题(含解析).docx_第4页
第4页 / 共30页
2022年人教版九年级数学上册第二十四章圆专项攻克试题(含解析).docx_第5页
第5页 / 共30页
2022年人教版九年级数学上册第二十四章圆专项攻克试题(含解析).docx_第6页
第6页 / 共30页
2022年人教版九年级数学上册第二十四章圆专项攻克试题(含解析).docx_第7页
第7页 / 共30页
2022年人教版九年级数学上册第二十四章圆专项攻克试题(含解析).docx_第8页
第8页 / 共30页
2022年人教版九年级数学上册第二十四章圆专项攻克试题(含解析).docx_第9页
第9页 / 共30页
2022年人教版九年级数学上册第二十四章圆专项攻克试题(含解析).docx_第10页
第10页 / 共30页
2022年人教版九年级数学上册第二十四章圆专项攻克试题(含解析).docx_第11页
第11页 / 共30页
2022年人教版九年级数学上册第二十四章圆专项攻克试题(含解析).docx_第12页
第12页 / 共30页
2022年人教版九年级数学上册第二十四章圆专项攻克试题(含解析).docx_第13页
第13页 / 共30页
2022年人教版九年级数学上册第二十四章圆专项攻克试题(含解析).docx_第14页
第14页 / 共30页
2022年人教版九年级数学上册第二十四章圆专项攻克试题(含解析).docx_第15页
第15页 / 共30页
2022年人教版九年级数学上册第二十四章圆专项攻克试题(含解析).docx_第16页
第16页 / 共30页
2022年人教版九年级数学上册第二十四章圆专项攻克试题(含解析).docx_第17页
第17页 / 共30页
2022年人教版九年级数学上册第二十四章圆专项攻克试题(含解析).docx_第18页
第18页 / 共30页
2022年人教版九年级数学上册第二十四章圆专项攻克试题(含解析).docx_第19页
第19页 / 共30页
2022年人教版九年级数学上册第二十四章圆专项攻克试题(含解析).docx_第20页
第20页 / 共30页
2022年人教版九年级数学上册第二十四章圆专项攻克试题(含解析).docx_第21页
第21页 / 共30页
2022年人教版九年级数学上册第二十四章圆专项攻克试题(含解析).docx_第22页
第22页 / 共30页
2022年人教版九年级数学上册第二十四章圆专项攻克试题(含解析).docx_第23页
第23页 / 共30页
2022年人教版九年级数学上册第二十四章圆专项攻克试题(含解析).docx_第24页
第24页 / 共30页
2022年人教版九年级数学上册第二十四章圆专项攻克试题(含解析).docx_第25页
第25页 / 共30页
2022年人教版九年级数学上册第二十四章圆专项攻克试题(含解析).docx_第26页
第26页 / 共30页
2022年人教版九年级数学上册第二十四章圆专项攻克试题(含解析).docx_第27页
第27页 / 共30页
2022年人教版九年级数学上册第二十四章圆专项攻克试题(含解析).docx_第28页
第28页 / 共30页
2022年人教版九年级数学上册第二十四章圆专项攻克试题(含解析).docx_第29页
第29页 / 共30页
2022年人教版九年级数学上册第二十四章圆专项攻克试题(含解析).docx_第30页
第30页 / 共30页
亲,该文档总共30页,全部预览完了,如果喜欢就下载吧!
资源描述

1、人教版九年级数学上册第二十四章圆专项攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,O的半径为5,弦AB=8,P是弦AB上的一个动点(不与A,B重合),下列符合条件的OP的值是()A6.5B5.

2、5C3.5D2.52、如图,O是RtABC的外接圆,ACB90,过点C作O的切线,交AB的延长线于点D设A,D,则()AB+90C2+90D+2903、下列语句,错误的是()A直径是弦B相等的圆心角所对的弧相等C弦的垂直平分线一定经过圆心D平分弧的半径垂直于弧所对的弦4、已知圆的半径为扇形的圆心角为,则扇形的面积为()ABCD5、如图,O的直径垂直于弦,垂足为若,则的长是()ABCD6、已知扇形的半径为6,圆心角为则它的面积是()ABCD7、如图,点A、B、C在O上,且ACB=100o,则度数为()A160oB120oC100oD80o8、如图,在中,AB=AC=5,点在上,且,点E是AB上的

3、动点,连结,点,G分别是BC,DE的中点,连接,当AG=FG时,线段长为()ABCD49、如图,点A,B的坐标分别为,点C为坐标平面内一点,点M为线段的中点,连接,则的最大值为( )ABCD10、一个等腰直角三角形的内切圆与外接圆的半径之比为()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在中,ABC=90,A=58,AC=18,点D为边AC的中点以点B为圆心,BD为半径画圆弧,交边BC于点E,则图中阴影部分图形的面积为_a2、如图,正方形ABCD的边长为2a,E为BC边的中点, 的圆心分别在边AB、CD上,这两段圆弧在正方形内交于点F,则E、F间的距

4、离为 3、如图,将绕点顺时针旋转25得到,EF交BC于点N,连接AN,若,则 _4、如图,AB是O的直径,弦CDAB于点E若AB10,AE1,则弦CD的长是_5、如图,PA、PB切O于A、B两点,点C在O上,且PC,则AOB_三、解答题(5小题,每小题10分,共计50分)1、如图,在直角梯形ABCD中,ADBC,ABC=90,AB=12cm,AD=8cm,BC=22cm,AB为O的直径,动点P从点A开始沿AD边向点D以1cm/s的速度运动,动点Q从点C开始沿CB边向点B以2cm/s的速度运动P、Q分别从点A、C同时出发,当其中一个动点到达端点时,另一个动点也随之停止运动,设运动时间为t(s)(

5、1)当t为何值时,四边形PQCD为平行四边形?(2)当t为何值时,PQ与O相切?2、如图,在中,的中点(1)求证:三点在以为圆心的圆上;(2)若,求证:四点在以为圆心的圆上3、如图,ABC内接于O,A = 30,过圆心O作ODBC,垂足为D若O的半径为6,求OD的长4、如图,已知抛物线的顶点坐标为M,与x轴相交于A,B两点(点B在点A的右侧),与y轴相交于点C(1)用配方法将抛物线的解析式化为顶点式:(),并指出顶点M的坐标;(2)在抛物线的对称轴上找点R,使得CR+AR的值最小,并求出其最小值和点R的坐标;(3)以AB为直径作N交抛物线于点P(点P在对称轴的左侧),求证:直线MP是N的切线5

6、、已知四边形内接于O,垂足为E,垂足为F,交于点G,连接(1)求证:;(2)如图1,若,求O的半径;(3)如图2,连接,交于点H,若,试判断是否为定值,若是,求出该定值;若不是,说明理由-参考答案-一、单选题1、C【解析】【分析】连接OB,作OMAB与M根据垂径定理和勾股定理,求出OP的取值范围即可判断【详解】解:连接OB,作OMAB与MOMAB,AM=BM=AB=4,在直角OBM中,OB=5,BM=4,故选:C【考点】本题考查了垂径定理、勾股定理,常把半弦长,半圆心角,圆心到弦距离转换到同一直角三角形中,然后通过直角三角形予以求解2、C【解析】【分析】连接OC, 由BOC是AOC的外角,可得

7、BOC2A2,由CD是O的切线,可求OCD90,可得D902即可【详解】连接OC,如图,O是RtABC的外接圆,ACB90,AB是直径,A,OA=OC,BOC是AOC的外角,A=ACO,BOC=A+ACO2A2,CD是O的切线,OCCD,OCD90,D90BOC902,2+90故选:C【考点】本题考查圆的半径相等,三角形外角性质,切线性质,直角三角形两锐角互余性质,掌握圆的半径相等,三角形外角性质,切线性质,直角三角形两锐角互余性质3、B【解析】【分析】将每一句话进行分析和处理即可得出本题答案.【详解】A.直径是弦,正确.B.在同圆或等圆中,相等的圆心角所对的弧相等,相等的圆心角所对的弧相等,

8、错误.C.弦的垂直平分线一定经过圆心,正确.D.平分弧的半径垂直于弧所对的弦,正确.故答案选:B.【考点】本题考查了圆中弦、圆心角、弧度之间的关系,熟练掌握该知识点是本题解题的关键.4、B【解析】【分析】扇形面积公式为: 利用公式直接计算即可得到答案【详解】解: 圆的半径为扇形的圆心角为, 故选:【考点】本题考查的是扇形的面积的计算,掌握扇形的面积的计算公式是解题的关键5、C【解析】【分析】根据直角三角形的性质可求出CE=1,再根据垂径定理可求出CD【详解】解:O的直径垂直于弦, ,CE=1CD=2故选:C【考点】本题考查了直角三角形的性质,垂径定理等知识点,能求出CE=DE是解此题的关键6、

9、D【解析】【分析】已知扇形的半径和圆心角度数求扇形的面积,选择公式直接计算即可【详解】解:故选:D【考点】本题考查扇形面积公式的知识点,熟知扇形面积公式及适用条件是解题的关键7、A【解析】【分析】在O取点,连接 利用圆的内接四边形的性质与一条弧所对的圆心角是它所对的圆周角的2倍,可得答案【详解】解:如图,在O取点,连接 四边形为O的内接四边形, 故选A【考点】本题考查的是圆的内接四边形的性质,同弧所对的圆心角是它所对的圆周角的2倍,掌握相关知识点是解题的关键8、A【解析】【分析】连接DF,EF,过点F作FNAC,FMAB,结合直角三角形斜边中线等于斜边的一半求得点A,D,F,E四点共圆,DFE

10、=90,然后根据勾股定理及正方形的判定和性质求得AE的长度,从而求解【详解】解:连接DF,EF,过点F作FNAC,FMAB在中,点G是DE的中点,AG=DG=EG又AG=FG点A,D,F,E四点共圆,且DE是圆的直径DFE=90在RtABC中,AB=AC=5,点是BC的中点,CF=BF=,FN=FM=又FNAC,FMAB,四边形NAMF是正方形AN=AM=FN=又,NFDMFEME=DN=AN-AD=AE=AM+ME=3在RtDAE中,DE=故选:A【考点】本题考查直径所对的圆周角是90,四点共圆及正方形的判定和性质和用勾股定理解直角三角形,掌握相关性质定理正确推理计算是解题关键9、B【解析】

11、【分析】如图所示,取AB的中点N,连接ON,MN,根据三角形的三边关系可知OMON+MN,则当ON与MN共线时,OM= ON+MN最大,再根据等腰直角三角形的性质以及三角形的中位线即可解答【详解】解:如图所示,取AB的中点N,连接ON,MN,三角形的三边关系可知OMON+MN,则当ON与MN共线时,OM= ON+MN最大,则ABO为等腰直角三角形,AB=,N为AB的中点,ON=,又M为AC的中点,MN为ABC的中位线,BC=1,则MN=,OM=ON+MN=,OM的最大值为故答案选:B【考点】本题考查了等腰直角三角形的性质以及三角形中位线的性质,解题的关键是确定当ON与MN共线时,OM= ON+

12、MN最大10、D【解析】【分析】设等腰直角三角形的直角边是1,则其斜边是根据直角三角形的内切圆半径是两条直角边的和与斜边的差的一半,得其内切圆半径是;其外接圆半径是斜边的一半,得其外接圆半径是所以它们的比为=【详解】解:设等腰直角三角形的直角边是1,则其斜边是;内切圆半径是,外接圆半径是,所以它们的比为=故选:D【考点】本题考查三角形的内切圆与外接圆的知识,解题的关键是熟记直角三角形外接圆的半径和内切圆的半径公式:直角三角形的内切圆半径等于两条直角边的和与斜边的差的一半;直角三角形外接圆的半径是斜边的一半二、填空题1、【解析】【分析】先根据直角三角形斜边上的中线性质得到BD=CD=9,则DBC

13、=C=22,然后根据扇形的面积公式计算【详解】解:ABC=90,点D为边AC的中点,BD=CD=AC=9,DBC=C,C=90-A=90-58=32,DBE=32,图中阴影部分图形的面积= 故答案为:【考点】本题考查了扇形面积的计算:设圆心角是n,圆的半径为R的扇形面积为S,则S扇形= 或S扇形=lR(其中l为扇形的弧长)也考查了直角三角形斜边上的中线性质2、a【解析】【分析】作DE的中垂线交CD于G,则G为的圆心,H为的圆心,连接EF,GH,交于点O,连接GF,FH,HE,EG,依据勾股定理可得GE=FG=a,根据四边形EGFH是菱形,四边形BCGH是矩形,即可得到RtOEG中,OE=a,即

14、可得到EF=a【详解】如图,作DE的中垂线交CD于G,则G为的圆心,同理可得,H为的圆心,连接EF,GH,交于点O,连接GF,FH,HE,EG,设GE=GD=x,则CG=2a-x,CE=a,RtCEG中,(2a-x)2+a2=x2,解得x=a,GE=FG=a,同理可得,EH=FH=a,四边形EGFH是菱形,四边形BCGH是矩形,GO=BC=a,RtOEG中,OE=,EF=a,故答案为a【考点】本题主要考查了正方形的性质以及相交两圆的性质,相交两圆的连心线(经过两个圆心的直线),垂直平分两圆的公共弦注意:在习题中常常通过公共弦在两圆之间建立联系3、102.5【解析】【分析】先根据旋转的性质得到,

15、得到点A、N、F、C共圆,再利用,根据平角的性质即可得到答案;【详解】解:如图,AF与CB相交于点O,连接CF,根据旋转的性质得到:AC=AF,点A、N、F、C共圆,又点A、N、F、C共圆,(平角的性质),故答案为:102.5【考点】本题主要考查了旋转的性质、平角的性质、点共圆的判定,掌握平移的性质是解题的关键;4、6【解析】【分析】连接OC,根据勾股定理求出CE,根据垂径定理计算即可【详解】连接OC,AB是O的直径,弦CDAB,CD2CE,OEC90,AB10,AE1,OC5,OE514,在RtCOE中,CE3,CD2CE6,故答案为6【考点】本题考查了垂径定理、勾股定理,掌握垂直于弦的直径

16、平分这条弦,并且平分弦所对的两条弧是解题的关键5、120【解析】【分析】根据圆周角定理得到CAOB,根据切线的性质得到PAOPBO90,进而得出P+AOB180,根据题意计算,得到答案【详解】解:由圆周角定理得:CAOB,PA、PB切O于A、B两点,PAOPBO90,P+AOB180,PC,AOB+AOB180,AOB120,故答案为:120【考点】本题考查切线的性质以及圆周角定理,熟记由切线得垂直是解题的关键三、解答题1、(1)当时,四边形PQCD为平行四边形;(2)当t=2秒时,PQ与O相切【解析】【分析】(1)由题意得:,则,再由四边形PQCD是平行四边形,得到DP=CQ,由此建立方程求

17、解即可;(2)设PQ与O相切于点H过点P作PEBC,垂足为E先证明四边形ABEP是矩形,得到PE=AB=12cm由AP=BE=tcm,CQ=2tcm,得到BQ =(222t)cm,EQ=223t)cm;再由切线长定理得到AP=PH,HQ=BQ,则PQ=PH+HQ=AP+BQ=t+222t=(22t)cm;在RtPEQ中,PE2+EQ2=PQ2,则122+(223t)2=(22t)2,即:8t288t+144=0,由此求解即可【详解】解:(1)由题意得:,四边形PQCD是平行四边形,DP=CQ,解得,当时,四边形PQCD为平行四边形;(2)设PQ与O相切于点H过点P作PEBC,垂足为EPEB=9

18、0在直角梯形ABCD,ADBC,ABC=90,BAD=90,四边形ABEP是矩形,PE=AB=12cmAP=BE=tcm,CQ=2tcm,BQ=BCCQ=(222t)cm,EQ=BQBE=222tt=(223t)cm;AB为O的直径,ABC=DAB=90,AD、BC为O的切线,AP=PH,HQ=BQ,PQ=PH+HQ=AP+BQ=t+222t=(22t)cm;在RtPEQ中,PE2+EQ2=PQ2,122+(223t)2=(22t)2,即:8t288t+144=0,t211t+18=0,(t2)(t9)=0,t1=2,t2=9;P在AD边运动的时间为秒t=98,t=9(舍去),当t=2秒时,P

19、Q与O相切【考点】本题主要考查了切线长定理,矩形的性质与判定,勾股定理,平行四边形的性质等等,解题的关键在于能够熟练掌握切线长定理2、(1)见解析;(2)见解析【解析】【分析】(1)连结OC,利用直角三角形斜边中线等于斜边一半可得OA=OB=OC,所以A,B,C三点在以O为圆心,OA长为半径的圆上;(2)连结OD,可得OA=OB=OC=OD,所以A,B,C,D四点在以O为圆心,OA长为半径的圆上.【详解】解:(1)连结OC,在中,的中点,OC=OA=OB,三点在以为圆心的圆上;(2)连结OD,OA=OB=OC=OD,四点在以为圆心的圆上.【考点】此题考查了圆的定义:到定点的距离等于定长的点都在

20、同一个圆上,直角三角形斜边中线的性质证明几个点共圆,只需要证明这几个点到某个定点的距离相等即可.3、【解析】【分析】连接OB、OC,由圆周角定理及圆的性质得OBC是等边三角形,由ODBC可得CD=BD,由勾股定理可求得OD的长【详解】连接OB、OC,如图则OB=OC=6圆周角A与圆心角BOC对着同一段弧BOC=2A=60OBC是等边三角形BC=OB=6 ODBC在RtODC中,由勾股定理得:【考点】本题考查了圆周角定理、等边三角形的判定与性质、勾股定理等知识,连接两个半径运用圆周角定理是本题的关键4、(1),M(,);(2),(,);(3)证明见试题解析【解析】【详解】试题分析:(1)利用配方

21、法把一般式转化为顶点式,然后根据二次函数的性质求出抛物线的顶点坐标;(2)连接BC,则BC与对称轴的交点为R,此时CR+AR的值最小;先求出点A、B、C的坐标,再利用待定系数法求出直线BC的解析式,进而求出其最小值和点R的坐标;(3)设点P坐标为(x,)根据NPAB=,列出方程,解方程得到点P坐标,再计算得出,由勾股定理的逆定理得出MPN=90,然后利用切线的判定定理即可证明直线MP是N的切线试题解析:(1)=,抛物线的解析式化为顶点式为:,顶点M的坐标是(,);(2),当y=0时,解得x=1或6,A(1,0),B(6,0),x=0时,y=3,C(0,3)连接BC,则BC与对称轴x=的交点为R

22、,连接AR,则CR+AR=CR+BR=BC,根据两点之间线段最短可知此时CR+AR的值最小,最小值为BC=设直线BC的解析式为,B(6,0),C(0,3),解得:,直线BC的解析式为:,令x=,得y=,R点坐标为(,);(3)设点P坐标为(x,)A(1,0),B(6,0),N(,0),以AB为直径的N的半径为AB=,NP=,即,移项得,得:,整理得:,解得(与A重合,舍去),(在对称轴的右侧,舍去),(与B重合,舍去),点P坐标为(2,2)M(,),N(,0),=,=, =,MPN=90,点P在N上,直线MP是N的切线考点:1二次函数综合题;2最值问题;3切线的判定;4压轴题5、 (1)证明见

23、详解(2)(3)为定值,【解析】【分析】(1)由,可证明,由圆周角定理可知,可证明,再借助对顶角相等可知,进而证明,即可推导出;(2)由(1)可知,AC为DG的垂直平分线,即有,连接OA、OB、OC、OD,过点O作,垂足分别为M、N,利用垂径定理和圆周角定理推导, ,;再借助,可证明,进而得到,即可证明,即有;在中,利用勾股定理计算OC的长,即可得到O的半径;(3)过点H作,垂足分别为P、Q,过点D作于点K,由已知条件、三角函数函数及含30角的直角三角形的性质,先计算出,再根据,可得出,整理可得(1)证明:,;(2)解:由(1)可知,即AC为DG的垂直平分线,如图1,连接OA、OB、OC、OD,过点O作,垂足分别为M、N,则有,同理,即,在和中, ,在中,即圆O的半径为;(3)为定值,且,证明如下:如图2,过点H作,垂足分别为P、Q,过点D作于点K,即,且,在中,即有,即 ,【考点】本题主要考查了圆周角定理、垂径定理、等腰三角形的判定与性质、全等三角形的判定与性质、角平分线的性质及利用三角函数解直角三角形等知识,综合性较强,解题关键是熟练掌握相关知识并能够综合运用

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 语文

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1