1、人教版九年级数学上册第二十五章概率初步必考点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、一个布袋里装有2个红球,3个黑球,4个白球,它们除颜色外都相同,从中任意摸出1个球,则下事件中,发生的可能性
2、最大的是()A摸出的是白球B摸出的是黑球C摸出的是红球D摸出的是绿球2、在一个不透明的袋子里,装有3个红球、1个白球,它们除颜色外都相同,从袋中任意摸出一个球为红球的概率是()ABCD3、小玲与小丽两人各掷一个正方体骰子,规定两人掷的点数和为偶数,则小玲胜;点数和为奇数,则小丽胜,下列说法正确的是()A此规则有利于小玲B此规则有利于小丽C此规则对两人是公平的D无法判断4、若气象部门预报明天下雨的概率是70%,下列说法正确的是()A明天下雨的可能性比较大B明天一定不会下雨C明天一定会下雨D明天下雨的可能性比较小5、我们研究过的图形中,圆的任何一对平行切线的距离总是相等的,所以闹息“等宽曲线”除了
3、圆以外,还有一些几何图形也是“等宽曲线”,如勒洛三角形(如图1),它是分别以等边三角形的每个顶点为圆心,以边长为半径,在另两个顶点间画一段圆弧,三段圆弧围成的曲边三角形图2是等宽的勒洛三角形和圆形滚木的截面图()有如下四个结论:勒洛三角形是中心对称图形;使用截面是勒洛三角形的滚木来搬运东西,不会发生上下抖动;图2中,等边三角形的边长为,则勒洛三角形的周长为;图3中,在中随机以一点,则该点取自勒洛三角形部分的概率为,上述结论中,所有正确结论的序号是()ABCD6、有一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其它完全相同小李通过多次摸球试验后发现其中摸到红色、黑色球的频率稳定
4、在15%和45%,则口袋中白色球的个数很可能是()A6B16C18D247、抛掷一枚质地均匀的硬币时,正面向上的概率是0.5则下列判断正确的是()A连续掷2次时,正面朝上一定会出现1次B连续掷100次时,正面朝上一定会出现50次C连续掷次时,正面朝上一定会出现次D当抛掷次数越大时,正面朝上的频率越稳定于0.58、在“绿水青山就是金山银山”这句话中任选一个汉字,这个字是“绿”的概率为()ABCD9、从下列命题中,随机抽取一个是真命题的概率是()(1)无理数都是无限小数;(2)因式分解;(3)棱长是的正方体的表面展开图的周长一定是;(4)两条对角线长分别为6和8的菱形的周长是40ABCD110、一
5、个布袋里装有2个红球、3个黄球和5个白球,除颜色外其它都相同搅匀后任意摸出一个球,是白球的概率为()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、从分别标有A、B、C的3根纸签中随机抽取一根,然后放回,再随机抽取一根,两次抽签的所有可能结果的树形图如下:那么抽出的两根签中,一根标有A,一根标有C的概率是_2、现有两个不透明的袋子,一个装有2个红球、1个白球,另一个装有1个黄球、2个红球,这些球除颜色外完全相同从两个袋子中各随机摸出1个球,摸出的两个球颜色相同的概率是_3、一个均匀的正方体各面上分别标有数字1、2、3、4、5、6,这个正方体的表面展开图如图所示抛
6、掷这个正方体,则朝上一面所标数字恰好等于朝下一面所标数字的3倍的概率是_4、一个质地均匀的骰子,其六面上分别标有数字1,2,3,4,5,6,投掷一次,朝上的面的数字小于3的概率为 _5、小聪和小明两个同学玩“石头,剪刀、布“的游戏,随机出手一次是平局的概率是_三、解答题(5小题,每小题10分,共计50分)1、全面两孩政策实施后,甲,乙两个家庭有了各自的规划.假定生男生女的概率相同,回答下列问题:(1)甲家庭已有一个男孩,准备再生一个孩子,则第二个孩子是女孩的概率是 ;(2)乙家庭没有孩子,准备生两个孩子,求至少有一个孩子是女孩的概率.2、某组织就2022年春节联欢晚会节目的喜爱程度,在万达广场
7、进行了问卷调查,将问卷调查结果分为“非常喜欢”“比较喜欢”“感觉一般”“不太喜欢”四个等级,分别记作A,B,C,D,根据调查结果绘制出如图的“扇形统计图”和“条形统计图”,请结合图中所给信息解答下列问题:(1)这次被调查对象共有人,被调查者“不太喜欢”有人;(2)补全扇形统计图和条形统计图;(3)在“非常喜欢”调查结果里有5人为80后,分别为3男2女,在这5人中,该民间组织打算随机抽取2人进行采访,请你用列表法或列举法求出所选2人均为男生的概率3、现有三张鼠年生肖邮票,三张邮票除图案之外,其余都相同,将这三张邮票背面朝上洗匀,从中随机抽取一张,记下图案后放回,重新洗匀后再从中随机抽取一张,请用
8、画树状图(或列表)的方法,求抽到两张图案都是三只老鼠的生肖邮票的概率(注:三张邮票从左到右依次可标记为A、B、C)4、现有外包装完全相同的A、B、C三种衬衫共5包,从中任选一包是A或B的概率为,任选一包是B或C的概率为(1)求A、B、C三种衬衫各有多少包?(2)若从这5包中任意选取两包,求选中一包A和一包B衬衫的概率5、为了调查某地区九年级学生的身体素质情况,随机抽查了部分九年级学生进行体能测试,并依据其中仰卧起坐测试(次数/分钟)的结果绘制统计图表如下(不完整):组别次数段频数频率150.12120.243am4bn540.08(1)将统计表中的数据补充完整:_,_,_,_;(2)若该地区九
9、年级有12000名学生,请估算该地区九年级每分钟仰卧起坐次数多于45次的学生数;(3)若测试结果大于60次(含60次)为优秀,需要抽取其中两名同学进行复核,已知优秀的学生中含有2个女生,求恰好抽到同性别学生的概率-参考答案-一、单选题1、A【解析】【分析】个数最多的就是可能性最大的【详解】解:因为白球最多,所以被摸到的可能性最大故选A【考点】本题主要考查可能性大小的比较:只要总情况数目相同,谁包含的情况数目多,谁的可能性就大;反之也成立;若包含的情况相当,那么它们的可能性就相等2、A【解析】【分析】根据概率公式计算,即可求解【详解】解:根据题意得:从袋中任意摸出一个球为红球的概率是故选:A【考
10、点】本题考查了概率公式:熟练掌握随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数;P(必然事件)=1;P(不可能事件)=0是解题的关键3、C【解析】【详解】抛掷两枚均匀的正方体骰子,掷得点数之和为偶数的概率是,点数之和为奇数的概率是,所以规则对两人是公平的,故选:C4、A【解析】【分析】根据“概率”的意义进行判断即可【详解】解:A 明天下雨的概率是70%,即明天下雨的可能性是70%,也就是说明天下雨的可能性比较大,因此选项A符合题意,B. 明天下雨的可能性比较大,与明天一定不会下雨是矛盾的,因此选项B不符合题意;C 明天下雨的可能性是70%,并不代表明天一定会下雨,因此
11、选项C不符合题意;D 明天下雨的可能性是70%,也就是说明天下雨的可能性比较大,因此选项D不符合题意,故选:A【考点】本题考查了概率与可能性的关系,正确理解概率的意义是解题的关键5、C【解析】【分析】根据轴对称的性质,圆的性质,等边三角形的性质,概率的概念分别判断即可【详解】解:勒洛三角形是轴对称图形,不是中心对称图形,故错误;夹在平行线之间的莱洛三角形无论怎么滚动,平行线间的距离始终不变,使用截面是勒洛三角形的滚木来搬运东西,不会发生上下抖动,故正确;设等边三角形DEF的边长为2,勒洛三角形的周长=,圆的周长=,故正确;设等边三角形DEF的边长为,阴影部分的面积为:;ABC的面积为:,概率为
12、:,故错误;正确的选项有;故选:C【考点】本题考查了平行线的距离,等边三角形的性质,轴对称的性质,概率的定义,正确的理解题意是解题的关键6、B【解析】【分析】先由频率之和为1计算出白球的频率,再由数据总数频率=频数计算白球的个数【详解】解:摸到红色球、黑色球的频率稳定在15%和45%,摸到白球的频率为1-15%-45%=40%,故口袋中白色球的个数可能是4040%=16个故选B【考点】本题考查了利用频率求频数的知识,具体数目应等于总数乘部分所占总体的比值7、D【解析】【分析】根据概率的意义即可得出答案【详解】解:A. 连续掷2次时,正面朝上有可能出现,还有可能不出现,故选项A判断不正确;B.
13、连续掷100次时,正面朝上不一定会出现50次,故选项B判断不正确;C. 连续掷次时,正面朝上不一定会出现次,故选项C判断不正确;D. 当抛掷次数越大时,正面朝上的频率越稳定于0.5,正确,故选项D符合题意,故选:D【考点】本题考查的是模拟实验和概率的意义,熟知概率的定义是解答此题的关键8、B【解析】【分析】直接利用概率公式求解【详解】“绿水青山就是金山银山”这句话中共有10个字,这句话中任选一个汉字,这个字是“绿”的概率=故选:B【考点】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数9、C【解析】【分析】分别判断各命题的真假,再利用概率公式求解.【
14、详解】(1)无理数都是无限小数,是真命题,(2)因式分解,是真命题,(3)棱长是的正方体的表面展开图的周长一定是,是真命题,(4)菱形的对角线长为6和8根据菱形的性质,对角线互相垂直且平分,利用勾股定理可求得菱形的边长为5,则菱形的周长为,是假命题则随机抽取一个是真命题的概率是,故选:C【考点】本题考查了命题的真假,概率,菱形的性质,无理数,因式分解,正方体展开图,知识点较多,难度一般,解题的关键是运用所学知识判断各个命题的真假.10、A【解析】【分析】让白球的个数除以球的总数即为摸到白球的概率【详解】解:袋子里装有2个红球、3个黄球和5个白球共10个球,从中摸出一个球是白球的概率是故选:A【
15、考点】本题考查了概率公式的简单应用,熟知概率=所求情况数与总情况数之比是解题的关键二、填空题1、【解析】【分析】依据树状图分析所有等可能的出现结果,然后根据概率公式求出该事件的概率【详解】解:由树状图得:两次抽签的所有可能结果一共有9种情况,一根标有,一根标有的有,与,两种情况,一根标有,一根标有的概率是故答案为:【考点】本题考查的是用画树状图法求概率画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步或两步以上完成的事件用到的知识点为:概率所求情况数与总情况数之比2、【解析】【分析】列表得出所有等可能结果,从中找到两个球颜色相同的结果数,利用概率公式计算可得【详解】解:列表如下:黄红红
16、红(黄,红)(红,红)(红,红)红(黄,红)(红,红)(红,红)白(黄,白)(红,白)(红,白)由表知,共有9种等可能结果,其中摸出的两个球颜色相同的有4种结果,所以摸出的两个球颜色相同的概率为,故答案为【考点】本题考查了列表法与树状图的知识,解题的关键是能够用列表或列树状图将所有等可能的结果列举出来,难度不大3、【解析】【详解】根据随机事件概率大小的求法,找准两点:朝上一面所标数字恰好等于朝下一面所标数字的3倍的情况数目;所有标法的总数二者的比值就是其发生的概率的大小解:故1、3相对,2、6相对,4、5相对,那么3朝上或6朝上时,朝上一面所标数字恰好等于朝下一面所标数字的3倍,共有6种情况,
17、则朝上一面所标数字恰好等于朝下一面所标数字的3倍的概率是1/34、【解析】【分析】根据概率公式直接求解即可【详解】共6个数字,其中小于3的数有2个投掷一次,朝上的面的数字小于3的概率为故答案为:【考点】本题考查了简单概率公式的计算,熟悉概率公式是解题的关键5、【解析】【分析】列表表示所有可能出现的结果,再确定符合条件的结果,根据概率公式计算即可【详解】解:列表如下:石头剪子布石头(石头,石头)(石头,剪子)(石头,布)剪子(剪子,石头)(剪子,剪子)(剪子,布)布(布,石头)(布,剪子)(布,布)一共有9种可能出现的结果,每种结果出现的可能性相同,出手相同的时候即为平局,有3种,所以随机出手一
18、次平局的概率是,故答案为:【考点】本题主要考查了列表求概率,掌握概率计算公式是解题的关键三、解答题1、(1);(2)【解析】【分析】(1)根据可能性只有男孩或女孩,直接得到其概率;(2)列出所有的可能性,然后确定至少有一个女孩的可能性,然后可求概率.【详解】解:(1)(1)第二个孩子是女孩的概率=;故答案为;(2)画树状图为:共有4种等可能的结果数,其中至少有一个孩子是女孩的结果数为3,所以至少有一个孩子是女孩的概率=.【考点】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率2、 (1)50;
19、5(2)见解析(3)【解析】【分析】(1)利用公式“该部分的人数部分所占的百分比=总人数”求解即可(2)先算出B所占的百分比,然后再算出C的百分比及C对应的人数即可作图(3)利用列表法求出5人中3男2女,选2人接受采访均为男生的所有可能的情况,然后根据概率的计算方法求解即可(1)1530%=50(人),5010%=5(人)即:这次被调查对象共有 50人,被调查者“不太喜欢”有 5人;故答案为:50;5(2)B占总数的百分比为2050100%=40%,C占总数的百分比为:110%30%40%=20%,C的人数为:5020%=10(人),所求扇形统计图和条形统计图如下图所示:(3)用列表法表示选2
20、人接受采访的所有可能如下: 男男男女女男-(男,男)(男,男)(女,男)(女,男)男(男,男)-(男,男)(女,男)(女,男)男(男,男)(男,男)-(女,男)(女,男)女(男,女)(男,女)(男,女)-(女,女)女(男,女)(男,女)(男,女)(女,女)-故:P(所选2人均为男生)【考点】本题考查了列表法与树状图、条形统计图、扇形统计图等问题,解题的关键是要掌握整体与部分之间的数量关系及条形统计图与扇形统计图的作法.3、【解析】【分析】先画出树状图,共有9个等可能的结果,抽到两张图案都是三只老鼠的生肖邮票的结果有4个,然后由概率公式求解即可【详解】解:画树状图如图:共有9个等可能的结果,抽到
21、两张图案都是三只老鼠的生肖邮票的结果有4个,抽到两张图案都是三只老鼠的生肖邮票的概率为【考点】本题考查的是用列表法与树状图法求概率,解题时要注意此题是放回实验还是不放回实验,需用到的知识点为:概率=所求情况数与总情况数之比4、 (1)A、B、C三种衬衫各有1包,2包,2包(2)【解析】【分析】(1)设A衬衫由x包,C衬衫由y包,然后根据概率公式列出方程求解即可;(2)列出树状图找到所有的等可能性的结果数,然后找到选中一包A和一包B衬衫的结果数,最后依据概率公式求解即可(1)解:设A衬衫由x包,C衬衫由y包,由题意得:,解得5-1-2=2,A、B、C三种衬衫各有1包,2包,2包(2)解;列树状图
22、如下所示:由树状图可知一共有20种等可能性的结果数,其中选中一包A和一包B衬衫的结果数有4种,P(选中一包A和一包B衬衫) 【考点】本题主要考查了根据概率求数量,画树状图求解概率,熟知概率计算公式是解题的关键5、 (1)17;13;0.32;0.26(2)4080人(3)【解析】【分析】(1)用的圆心角度数除以360度即可求出n,利用的频数除以频率得到总人数,即可求出m、b、a;(2)用12000乘以样本中多于45次的学生占比即可得到答案;(3)用列举法求解即可;(1)解:由题意得:,总人数人,;(2)解:由题意得:人,该地区九年级每分钟仰卧起坐次数多于45次的学生数4080人;(3)解:优秀的人数总共有4人,其中女生有两人,则男生也有两人,一共有(男,男),(男,女),(女,男),(女,女)四种等可能的结果数,抽取两个学生是同性别的概率 【考点】本题主要考查了频数频率分布表,扇形统计图,用样本估计总体,列举法求概率,熟练掌握相关知识是解题的关键