1、京改版八年级数学上册第十章分式综合训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知a为整数,且为正整数,求所有符合条件的a的值的和()A8B12C16D102、我国古代著作四元玉鉴记载“买椽多少”
2、问题:“六贯二百一十钱,倩人去买几株椽每株脚钱三文足,无钱准与一株椽“其大意为:现请人代买一批椽,这批椽的价钱为6210文如果每件椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?设这批椽的数量为株,则符合题意的方程是()ABCD3、(为正整数)的值是()ABCD4、已知实数x,y,z满足+,且11,则x+y+z的值为()A12B14CD95、计算的结果是()ABCD6、若关于x的分式方程有增根,则m的值是()Am2或m6Bm2Cm6Dm2或m67、将的分母化为整数,得()ABCD8、若数使关于的分式方程的解为正数,则的取值正确的是()ABCD9
3、、若关于x的分式方程有增根,则m的值是()A1B1C2D210、若把分式中的和同时扩大为原来的3倍,则分式的值()A扩大到原来的3倍B扩大到原来的6倍C缩小为原来的D不变第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、方程的解是_2、若方程的根为负数,则k的取值范围是_。3、若,则的值等于_4、如图,约定:上方相邻两数之和等于这两数下方箭头共同指向的数示例:即4+3=7,则(1)用含x的式子表示m_;(2)当y2时,n的值为_5、化简1得_.三、解答题(5小题,每小题10分,共计50分)1、现有一装修工程,若甲、乙两队装修队合作,需要12天完成;若甲队先做5天,剩余部分
4、再由甲乙两队合作,还需要9天才能完成求:(1)甲乙两个装修队单独完成分别需要几天?(2)已知甲队每天施工费用4000元,乙队每天施工费用为2000元,要使该工程施工总费用为70000元,则甲装修队施工多少天?(3)甲装修队有装修工人12人,乙装修队有装修工人10人,该工程需要在13天内(包括13天)完成,该工程由甲乙两队合作完成,两队合作4天后,乙队另有任务需调出部分人员,则乙队最多调走多少人?2、已知,求实数a,b的平方和的倒数3、解下列方程(组):(1);(2)4、先化简,再求值:( )(x+2),其中x是不等式组的整数解5、解方程:(1)(2)-参考答案-一、单选题1、C【解析】【分析】
5、首先对于分式进行化简,然后根据a为整数、分式值为正整数可求出a的值,最后将a的所有值相加即可【详解】解:,a为整数,且分式的值为正整数,a51,5,a6,10,所有符合条件的a的值的和:6+1016故选:C【考点】本题考查了分式的混合运算,对分式的分子和分母能够正确分解因式是解题的关键2、A【解析】【分析】根据“这批椽的价钱为6210文”、“每件椽的运费为3文,剩下的椽的运费恰好等于一株椽的价钱”列出方程解答【详解】解:由题意得:,故选A.【考点】本题考查了分式方程的应用解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解,准确的找到等量关系并用方程表示出来是解
6、题的关键3、B【解析】【分析】根据分式的乘方计算法则解答【详解】故选:B【考点】此题考查分式的乘方计算法则:等于分子、分母分别乘方,熟记法则是解题的关键4、A【解析】【分析】把两边加上3,变形可得,两边除以得到,则,从而得到的值【详解】解:,即,而,故选:A【考点】本题考查了分式的加减法,解题的关键是掌握同分母的分式相加减,分母不变,把分子相加减经过通分,异分母分式的加减就转化为同分母分式的加减,同时解决问题的关键也是从后面的式子变形出5、D【解析】【分析】先求出两个分式的乘积,然后根据分式的性质:分子和分母同时乘以或除以一个不为0的数,分式的值不变,进行求解即可【详解】解: ,故选D【考点】
7、本题主要考查了分式的乘法和分式的化简,解题的关键在于能够熟练掌握相关知识进行求解6、A【解析】【分析】根据解分式方程的方法去分母,把分式方程化为整式方程;接下来把增根的值代入到整式方程中,就可以求出m的值【详解】关于x的分式方程有增根,是方程 的根,当时,解得:当时,解得:故选A.【考点】本题主要考查的是分式方程的相关知识,解题的关键是明确增根的含义7、D【解析】【分析】根据分式的基本性质求解【详解】解:将的分母化为整数,可得故选:D【考点】本题考查一元一次方程的化简,熟练掌握分式的基本性质解题关键8、A【解析】【分析】表示出分式方程的解,由解为正数确定出a的范围即可【详解】解:分式方程整理得
8、:,去分母得:2a4x4,解得:x,由分式方程的解为正数,得到0,且1,9、C【解析】【分析】先把分式方程化为整式方程,再把增根x=2代入整式方程,即可求解【详解】解:,去分母得:,关于x的分式方程有增根,增根为:x=2,即:m=2,故选C【考点】本题主要考查解分式方程以及分式方程的增根,把分式方程化为整式方程是解题的关键10、D【解析】【分析】根据分式的基本性质即可求出答案【详解】解:,把分式中的和同时扩大为原来的3倍,则分式的值不变,故选:D【考点】本题考查分式的基本性质,解题的关键是熟练运用分式的基本性质,本题属于基础题型二、填空题1、-3【解析】【分析】根据解分式方程的步骤去分母,解方
9、程,检验解答即可【详解】解:方程的两边同乘,得:,解这个方程,得:,经检验,是原方程的解,原方程的解是故答案为-3【考点】本题考查分式方程的解法,掌握分式方程的解题步骤是关键2、k2且k3【解析】【分析】方程两边都乘以(x+3)(x+k),化成整式方程,然后解关于x的一元一次方程,再根据解是负数得到关于k的一元一次不等式,解不等式即可,再根据分式方程的分母不等于0求出x-3,列式求出k的值,然后联立即可得出答案【详解】解:方程两边都乘以(x+3)(x+k)得,3(x+k)=2(x+3),解得x=-3k+6,方程的解是负数,-3k+60,解得k2,又x+30,x+k0,x-3,x-k-3k+6-
10、3, -3k+6-kk3,k2且k3故答案为:k2且k3【考点】本题考查了分式方程的解的应用,以及一元一次不等式的解法,需要注意方程的分母不等于0的情况得到k的另一范围,是一道比较容易出错的题目3、【解析】【分析】先把分式进行化简,再代入求值【详解】=当a=时,原式=故答案为【考点】分式进行约分时,应先把分子、分母中的多项式进行分解因式,正确分解因式是掌握约分的关键4、 【解析】【分析】(1)根据题意,可以用含x的式子表示出m;(2)根据图形,可以用x的代数式表示出y,列出关于x的分式方程,从而可以求得x的值,进而得到n的值【详解】解:(1)由图可得, 故答案为:;(2),解得,故答案为:【考
11、点】本题考查了分式的加减、解分式方程,解答本题的关键是明确题意,列出相应的代数式及分式方程及求出方程的解5、【解析】【分析】在分式乘除混合计算中,一般情况下是按照从左到右的顺序进行运算,如果有括号,那么应先算括号内的,再算括号外的【详解】1=1=.故答案为:.【考点】此题考查了分式的乘除混合运算,分式乘分式,用分子的积作为积的分子,分母的积作为积的分母;分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.三、解答题1、(1)甲、乙两装修队单独完成此项工程分别需要20天、30天;(2)10天;(3)2人【解析】【分析】(1)等量关系为:甲的工作效率5+甲乙合作的工作效率9=1,先算出甲单独
12、完成此项工程需要多少个月而后算出乙单独完成需要的时间;(2)两个关系式:甲乙两个工程队需完成整个工程;工程施工总费用为70000元(3)设乙队调走m人,利用(1)中所求数据得出甲乙两队每人一天完成的工作量,进而得出不等式求出即可【详解】解:(1)设甲装修队单独完成此项工程需要x天根据题意,得,解得x=20,经检验,x=20是原方程的解,答:甲、乙两装修队单独完成此项工程分别需要20,30天(2)设实际工作中甲、乙两装修队分别做a、b天根据题意,得,解得a=10,b=15答:要使该工程施工总费用为70000元,甲装修队应施工10天(3)设乙装修队调走m人,由题意可得:,解得:m,m的最大整数值为
13、2,答:乙队最多调走2人【考点】本题考查了分式方程的应用以及不等式解法与应用,利用总工作量为1得出等式方程是解决问题的关键2、【解析】【分析】根据非负数的性质和分式的性质,可得a2-16=0,,a4,求出a,b,然后再求a,b的平方和的倒数即可.【详解】解:根据题意得:a2-16=0,a4,所以 a4,b8 【考点】本题考查了绝对值、二次根式和分式的性质,根据题意求出a,b的值是解题关键.3、(1);(2)无解【解析】【分析】(1)用加减消元法解方程组即可;(2)先去分母,把分式方程转化为整式方程,求出方程的解,再进行检验即可【详解】解:(1)+,得6x=18,x=3-,得4y=8,y=2所以
14、原方程组的解为;(2),去分母,得6=3(1+x),去括号,得6=3+3x,移项合并,得3x=3,系数化为1,得x=1经检验,x=1是原方程的增根所以原方程无解【考点】本题考查了解二元一次方程组和解分式方程,能把二元一次方程组转化成一元一次方程是解二元一次方程组的关键,能把分式方程转化成整式方程是解分式方程的关键4、2【解析】【分析】先根据分式运算顺序和法则进行化简,再解不等式组,根据分式有意义的条件确定x的值,代入求解即可【详解】原式()() ,由,解得:1x2,x是整数,x0,1,2,由分式有意义的条件可知:x不能取0,1,故x2,原式2【考点】本题考查了分式化简求值和解不等式组,解题关键是熟练运用分式运算法则和解不等式的方法进行求解,注意:代入的数值要使分式有意义5、 (1)x=2(2)无解【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解(1)解:去分母得:4x=x+6,解得:x=2,检验:把x=2代入x(x+6) 0,x=2是原方程的根;(2)解:去分母得:x(x+2)-(x-1)(x+2)=3,解得:x=1,检验:把x=1代入得:(x-1)(x+2)=0,x=1是增根,分式方程无解【考点】本题考查了解分式方程,利用了转化的思想,解分式方程注意要检验