收藏 分享(赏)

2022年京改版八年级数学上册第十二章三角形定向测试试卷(解析版).docx

上传人:a**** 文档编号:693783 上传时间:2025-12-13 格式:DOCX 页数:22 大小:583.35KB
下载 相关 举报
2022年京改版八年级数学上册第十二章三角形定向测试试卷(解析版).docx_第1页
第1页 / 共22页
2022年京改版八年级数学上册第十二章三角形定向测试试卷(解析版).docx_第2页
第2页 / 共22页
2022年京改版八年级数学上册第十二章三角形定向测试试卷(解析版).docx_第3页
第3页 / 共22页
2022年京改版八年级数学上册第十二章三角形定向测试试卷(解析版).docx_第4页
第4页 / 共22页
2022年京改版八年级数学上册第十二章三角形定向测试试卷(解析版).docx_第5页
第5页 / 共22页
2022年京改版八年级数学上册第十二章三角形定向测试试卷(解析版).docx_第6页
第6页 / 共22页
2022年京改版八年级数学上册第十二章三角形定向测试试卷(解析版).docx_第7页
第7页 / 共22页
2022年京改版八年级数学上册第十二章三角形定向测试试卷(解析版).docx_第8页
第8页 / 共22页
2022年京改版八年级数学上册第十二章三角形定向测试试卷(解析版).docx_第9页
第9页 / 共22页
2022年京改版八年级数学上册第十二章三角形定向测试试卷(解析版).docx_第10页
第10页 / 共22页
2022年京改版八年级数学上册第十二章三角形定向测试试卷(解析版).docx_第11页
第11页 / 共22页
2022年京改版八年级数学上册第十二章三角形定向测试试卷(解析版).docx_第12页
第12页 / 共22页
2022年京改版八年级数学上册第十二章三角形定向测试试卷(解析版).docx_第13页
第13页 / 共22页
2022年京改版八年级数学上册第十二章三角形定向测试试卷(解析版).docx_第14页
第14页 / 共22页
2022年京改版八年级数学上册第十二章三角形定向测试试卷(解析版).docx_第15页
第15页 / 共22页
2022年京改版八年级数学上册第十二章三角形定向测试试卷(解析版).docx_第16页
第16页 / 共22页
2022年京改版八年级数学上册第十二章三角形定向测试试卷(解析版).docx_第17页
第17页 / 共22页
2022年京改版八年级数学上册第十二章三角形定向测试试卷(解析版).docx_第18页
第18页 / 共22页
2022年京改版八年级数学上册第十二章三角形定向测试试卷(解析版).docx_第19页
第19页 / 共22页
2022年京改版八年级数学上册第十二章三角形定向测试试卷(解析版).docx_第20页
第20页 / 共22页
2022年京改版八年级数学上册第十二章三角形定向测试试卷(解析版).docx_第21页
第21页 / 共22页
2022年京改版八年级数学上册第十二章三角形定向测试试卷(解析版).docx_第22页
第22页 / 共22页
亲,该文档总共22页,全部预览完了,如果喜欢就下载吧!
资源描述

1、京改版八年级数学上册第十二章三角形定向测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,AE是ABC的中线,D是BE上一点,若EC6,DE2,则BD的长为()A4B3C2D12、如图,已知在四边形

2、中,平分,则四边形的面积是()A24B30C36D423、平面内,将长分别为1,5,1,1,d的线段,顺次首尾相接组成凸五边形(如图),则d可能是()A1B2C7D84、如图,在ABC中,DE是AC的垂直平分线,且分别交BC,AC于点D和E,B60,C25,则BAD为()A50B70C75D805、如图,在ABC中,ABC90,AB3,BC1,AB在数轴上,以点A为圆心,AC长为半径作弧,交数轴的正半轴于点M,则M表示的数为()A2.1B1CD16、在下列条件中:ABC;AB2C;ABaC;ABC123,能确定ABC为直角三角形的条件有()A1个B2个C3个D4个7、能说明“锐角,锐角的和是锐

3、角”是假命题的例证图是()ABCD8、如图,在中,平分,于点的角平分线所在直线与射线相交于点,若,且,则的度数为()ABCD9、如图,在小正三角形组成的网格中,已有个小正三角形涂黑,还需涂黑个小正三角形,使它们与原来涂黑的小正三角形组成的新图案恰有三条对称轴,则的最小值为()ABCD10、下图所示的五角星是用螺栓将两端打有孔的5根木条连接构成的图形,它的形状不稳定,如果在木条交叉点打孔加装螺栓的办法使其形状稳定,那么至少需要添加()个螺栓A1B2C3D4第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,点在的边的延长线上,点在边上,连接交于点,若,则_2、在平面直角

4、坐标系中,点与点关于轴对称,则的值是_3、将两张三角形纸片如图摆放,量得1+2+3+4=220,则5=_4、如图,在等腰直角三角形ABC中,BAC90,在BC上截取BDBA,作ABC的平分线与AD相交于点P,连接PC,若ABC的面积为2cm2,则BPC的面积为 _cm25、在三角形的三条高中,位于三角形外的可能条数是_条三、解答题(5小题,每小题10分,共计50分)1、如图,是一块草坪,已知AD=12m,CD=9m,ADC=90,AB=39m,BC=36m,求这块草坪的面积2、如图,在中,且,点是斜边的中点,E、F分别是AB、AC边上的点,且连接(1)求证:;(2)如图,若,则的面积为_3、如

5、图,点E在边AC上,已知ABDC,AD,BCDE,求证:DEAE+BC4、问题情景:如图1,在同一平面内,点和点分别位于一块直角三角板的两条直角边,上,点与点在直线的同侧,若点在内部,试问,与的大小是否满足某种确定的数量关系?(1)特殊探究:若,则_度,_度,_度;(2)类比探索:请猜想与的关系,并说明理由;(3)类比延伸:改变点的位置,使点在外,其它条件都不变,判断(2)中的结论是否仍然成立?若成立,请说明理由;若不成立,请直接写出,与满足的数量关系式5、已知:如图,点在上,且求证:-参考答案-一、单选题1、A【解析】【分析】根据三角形中线定义得BE=EC=6,再由BD=BE-DE求解即可【

6、详解】解:AE是ABC的中线,EC=6,BE=EC=6, DE=2,BD=BEDE=62=4,故选:A【考点】本题考查了三角形的中线,熟知三角形的中线定义是解答的关键2、B【解析】【分析】过D作DEAB交BA的延长线于E,根据角平分线的性质得到DE=CD=4,根据三角形的面积公式即可得到结论【详解】如图,过D作DEAB交BA的延长线于E,BD平分ABC,BCD=90,DE=CD=4,四边形的面积 故选B.【考点】本题考查了角平分线的性质,三角形的面积的计算,正确的作出辅助线是解题的关键3、C【解析】【分析】如图(见解析),设这个凸五边形为,连接,并设,先在和中,根据三角形的三边关系定理可得,从

7、而可得,再在中,根据三角形的三边关系定理可得,从而可得,由此即可得出答案【详解】解:如图,设这个凸五边形为,连接,并设,在中,即,在中,即,所以,在中,所以,观察四个选项可知,只有选项C符合,故选:C【考点】本题考查了三角形的三边关系定理,通过作辅助线,构造三个三角形是解题关键4、B【解析】【分析】根据线段垂直平分线的性质得到DA=DC,根据等腰三角形的性质得到DAC=C,根据三角形内角和定理求出BAC,计算即可【详解】DE是AC的垂直平分线,DA=DC,DAC=C=25,B=60,C=25,BAC=95,BAD=BAC-DAC=70,故选B【考点】本题考查的是线段垂直平分线的性质、等腰三角形

8、的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键5、B【解析】【分析】先根据勾股定理求出AB的长,进而可而出结论【详解】ABC中,B=90,AB=3,BC=1,AC=A点表示1,M点表示1故选:B【考点】本题考查勾股定理及实数与数轴,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键6、B【解析】【详解】分析:根据所给的4个条件分别求出4个条件下ABC中的最大角的度数,再进行判断即可.详解:A+B=C,A+B+C=180,C=180=90,此时ABC是直角三角形;A=B=2C,A+B+C=180,5C=180,解得C=36,A=B=7

9、2,此时ABC不是直角三角形;ABaC,A+B+C=180,(2a+1)C=180,解得C=,A=B=,此时ABC中三个内角的度数是不确定的,不能确定ABC是否是直角三角形;ABC123,A+B+C=180,C=180=90,此时ABC是直角三角形.综上所述,根据上述条件能够确定ABC是直角三角形的有2个.故选B.点睛:本题的解题要点是:“根据已知条件结合三角形内角和是180确定出ABC的最大角的度数即可判断此时ABC是否是直角三角形了”.7、C【解析】【分析】先将每个图形补充成三角形,再利用三角形的外角性质逐项判断即得答案【详解】解:A、如图1,1是锐角,且1=,所以此图说明“锐角,锐角的和

10、是锐角”是真命题,故本选项不符合题意; B、如图2,2是锐角,且2=,所以此图说明“锐角,锐角的和是锐角”是真命题,故本选项不符合题意;C、如图3,3是钝角,且3=,所以此图说明“锐角,锐角的和是锐角”是假命题,故本选项符合题意;D、如图4,4是锐角,且4=,所以此图说明“锐角,锐角的和是锐角”是真命题,故本选项不符合题意故选:C【考点】本题考查了真假命题、举反例说明一个命题是假命题以及三角形的外角性质等知识,属于基本题型,熟练掌握上述基本知识是解题的关键8、C【解析】【分析】由角平分线的定义可以得到,设,假设,通过角的等量代换可得到,代入的值即可【详解】平分,平分,设可以假设,设,则故答案选

11、:C【考点】本题主要考查了角平分线的定义以及角的等量代换,三角形的内角和定理,外角的性质,二元一次方程组的应用,灵活设立未知数代换角是解题的关键9、C【解析】【分析】由等边三角形有三条对称轴可得答案【详解】如图所示,n的最小值为3故选C【考点】本题考查了利用轴对称设计图案,解题的关键是掌握常见图形的性质和轴对称图形的性质10、A【解析】【分析】用木条交叉点打孔加装螺栓的办法去达到使其形状稳定的目的,可用三角形的稳定性解释【详解】如图,A点加上螺栓后,根据三角形的稳定性,原不稳定的五角星中具有了稳定的各边故答案为:A【考点】本题考查了三角形的稳定性的问题,掌握三角形的稳定性是解题的关键二、填空题

12、1、102【解析】【分析】首先根据DFC3B117,可以算出B39,然后设CDx,根据外角与内角的关系可得39xx117,再解方程即可得到x39,再根据三角形内角和定理求出BED的度数【详解】解:DFC3B117,B39,设CDx,39xx117,解得:x39,D39,BED1803939102故答案为:102【考点】此题主要考查了三角形外角的性质,关键是掌握三角形的一个外角等于和它不相邻的两个内角的和2、4【解析】【分析】根据关于x轴对称的两点的横坐标相同,纵坐标互为相反数求得a、b的值即可求得答案.【详解】点与点关于轴对称,则a+b的值是:,故答案为【考点】本题考查了关于x轴对称的点的坐标

13、特征,熟练掌握关于坐标轴对称的点的坐标特征是解此类问题的关键.3、40【解析】【分析】直接利用三角形内角和定理得出6+7的度数,进而得出答案【详解】如图所示:1+2+6=180,3+4+7=180,1+2+3+4=220,1+2+6+3+4+7=360,6+7=140,5=180-(6+7)=40故答案为40【考点】主要考查了三角形内角和定理,正确应用三角形内角和定理是解题关键4、1【解析】【分析】根据等腰三角形三线合一的性质即可得出,即得出和是等底同高的三角形,和是等底同高的三角形,即可推出,即可求出答案【详解】BDBA,BP是ABC的角平分线,和是等底同高的三角形,和是等底同高的三角形,故

14、答案为:1【考点】本题考查等腰三角形的性质掌握等腰三角形“三线合一”是解答本题的关键5、0或2【解析】【分析】当三角形为钝角三角形时,三角形的高有两条在三角形外,一条在三角形内;当三角形为直角三角形和锐角三角形时没有高在三角形外【详解】解:当三角形为直角三角形和锐角三角形时,没有高在三角形外;而当三角形为钝角三角形时,三角形的高有两条在三角形外,一条在三角形内在三角形的三条高中,位于三角形外的可能条数是0或2条故答案为0或2【考点】此题主要考查了三角形的高的位置,不同形状的三角形,它的高的情况不同,要求学生必须熟练掌握三、解答题1、216平方米【解析】【分析】连接AC,根据勾股定理计算AC,根

15、据勾股定理的逆定理判定三角形ABC是直角三角形,根据面积公式计算即可【详解】连接AC,AD12,CD9,ADC90,AC=15,AB39,BC36,AC=15,ACB=90,这块空地的面积为:=216(平方米),故这块草坪的面积216平方米【考点】本题考查了勾股定理及其逆定理,熟练掌握定理并灵活运用是解题的关键2、(1)见解析;(2)【解析】【分析】(1)易证ADE=CDF,即可证明ADECDF;(2)由(1)可得AE=CF,BE=AF,再根据DEF的面积=,即可解题【详解】(1)证明:AB=AC,D是BC中点,BAD=C=45,AD=BD=CD,ADE+ADF=90,ADF+CDF=90,A

16、DE=CDF,在ADE和CDF中,ADECDF(ASA)(2)解:ADECDFAE=CF=5,BE=AF=12,AB=AC=17,DEF的面积=【考点】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证ADECDF是解题的关键3、见解析【解析】【分析】根据AAS证明ABCDCE,得到DE= AC,BC=EC ,再进行线段的代换即可求解【详解】解:证明:BCDE,ACB=DEC,在ABC和DCE中,ABCDCE(AAS),DE= AC,BC=EC ,DE= AC=AE+EC =AE+BC【考点】本题考查了全等三角形的判定与性质,熟知全等三角形的判定定理并根据题意灵活应用是解

17、题关键4、(1)125,90,35;(2)ABP+ACP=90-A,证明见解析;(3)结论不成立ABP-ACP=90-A,ABP+ACP=A-90或ACP - ABP =90-A【解析】【分析】(1)根据三角形内角和即可得出ABC+ACB,PBC+PCB,然后即可得出ABP+ACP;(2)根据三角形内角和定理进行等量转换,即可得出ABP+ACP=90-A;(3)按照(2)中同样的方法进行等量转换,求解即可判定.【详解】(1)ABC+ACB=180-A=180-55=125度,PBC+PCB=180-P=180-90=90度,ABP+ACP=ABC+ACB -(PBC+PCB)=125-90=3

18、5度;(2)猜想:ABP+ACP=90-A;证明:在ABC中,ABC+ACB180-A,ABC=ABP+PBC,ACB=ACP+PCB,(ABP+PBC)+(ACP+PCB)=180-A,(ABP+ACP)+(PBC+PCB)=180-A,又在RtPBC中,P=90,PBC+PCB=90,(ABP+ACP)+90=180-A,ABP+ACP=90-A(3)判断:(2)中的结论不成立证明:在ABC中,ABC+ACB180-A,ABC=PBC-ABP,ACB=PCB-ACP,(PBC+PCB)-(ABP+ACP)=180-A,又在RtPBC中,P=90,PBC+PCB=90,ABP-ACP=90-A,ABP+ACP=A-90或ACP - ABP =90-A【考点】此题主要考查利用三角形内角和定理进行等角转换,熟练掌握,即可解题.5、见解析.【解析】【分析】根据三角形内角和定理结合已知条件求出AC180即可得出结论.【详解】解:,C180(CEDD)180A,AC180,ABCD.【考点】本题考查了三角形内角和定理以及平行线的判定,比较基础,熟练掌握相关性质定理即可解题.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 语文

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1