1、4.4 角的比较【学习目标】 1、运用类比的方法,学会比较两个角的大小. 2、理解角的平分线的定义,并能借助角的平分线的定义解决问题. 3、理解两个角的和、差、倍、分的意义,会进行角的运算.【学习重点难点】认识角平分线及画角平分线,角的计算.【学习方法】小组合作学习.【学习过程】模块一 预习反馈一、学习准备1.线段的长短比较方法:_、_、_2. 角的分类 (1)_:大于0度小于90度的角; (2)_:等于90度的角; (3)_:大于90度而小于180度的角; (4)平角:_; (5)周角:_;3.阅读教材第4节角的比较二、教材精读4. 角的大小比较(1)_:把两个角的顶点及一边重合,另一边落在
2、重合边得同旁,则可比较大小。如图:与,重合顶点O、E和边、落在重合边同旁,符号语言: (2)_:量出两角的度数,按度数比较角的大小。5. 角平分线的定义从一个角的顶点引出一条_,把这个角分成两个_的角,这条_叫做这个角的平分线。符号语言: (_或AOB =2 ; 或AOC= ,BOC =_ ) 实践练习:如下图所示,求解下列问题:(1)比较AOB,AOC,AOD,AOE的大小,并指出其中的锐角、直角、钝角、平角。(2)写出,中某些角之间的两个等量关系。 分析:因为这4个角有共同的顶点O和边OA,所以运用叠合法比较大小很简便;小于直角的角是_,角的两边夹角为90的角是_,大于直角且小于平角的角是
3、_。解: 实践练习:O是直线上一点,平分求的度数?解: 三、教材拓展 6、如图:AC为一条直线,O是AC上一点,AOB=,OE、OF分别平分AOB和BOC。 (1)求EOF的大小; 实践练习:上体中当OB绕点O向OA或OC旋转时(但不与OA、OC重合),OE、OF仍为AOB和BOC的平分线,问:EOF的大小是否改变?并说明理由。 模块二 合作探究O图1EDCBA 7、如图1,已知,内部的任意一条射线,试求的度数。分析:运用角平分线的定义求解。解:归纳:相邻两个角的角平分线的夹角始终未两个角的和的一半,而与的大小无关。实践练习:如图2,已知,求的度数。 B图2DCAO 分析:角的和差关系与角平分
4、线的混合运用,角度的计算类比线段的计算,可以用代数方法中的列方程来解决。解:模块三 形成提升1.若OC是AOB的平分线,则(1)AOC=_; (2)AOC=_;(3)AOB=2_.2. 平角=_直角, 周角=_平角=_直角,135角=_平角.3.如图:AOC= BOD=90 (1)AOB=62,求COD的度数; (2)若DOC2COB,求AOD的度数。4如图(2),AOC=_+_=_-_;BOC=_-_= _-_.5. 如图,AB、CD相交于点O,OB平分DOE,若DOE=60, 则AOC的度数是_.模块四 小结评价一、本课知识: 1、角的比较:(1)用量角器量出它们的度数,再进行比较; (2)将两个角的_及_重合,另一条边放在重合边的_ 就可以比较大小。 2、角的分类,小于平角的角按大小分成三类:当一个角等于平角的一半时叫_;大于零度角小于直角的角叫_;大于直角小于平角的叫_。 3、从一个角的顶点引出的一条射线,把这个角分成两个_的角,这条射线叫做这个角的_。1 我的困惑附:课外拓展思维训练:1.如图,已知射线在的内部,且,射线分别平分,求的大小。ONMDCBA2.(2012江西)如果在阳光下你的身影方向为北偏东60,那太阳相对你的方向是( )A.南偏西60 B.南偏西30 C.北偏东60 D.北偏东30