收藏 分享(赏)

2022八年级数学下册 第十九章 一次函数19.docx

上传人:a**** 文档编号:664399 上传时间:2025-12-12 格式:DOCX 页数:6 大小:106.41KB
下载 相关 举报
2022八年级数学下册 第十九章 一次函数19.docx_第1页
第1页 / 共6页
2022八年级数学下册 第十九章 一次函数19.docx_第2页
第2页 / 共6页
2022八年级数学下册 第十九章 一次函数19.docx_第3页
第3页 / 共6页
2022八年级数学下册 第十九章 一次函数19.docx_第4页
第4页 / 共6页
2022八年级数学下册 第十九章 一次函数19.docx_第5页
第5页 / 共6页
2022八年级数学下册 第十九章 一次函数19.docx_第6页
第6页 / 共6页
亲,该文档总共6页,全部预览完了,如果喜欢就下载吧!
资源描述

1、19.2.3一次函数与方程、不等式知能演练提升一、能力提升1.一次函数y=kx+b的图象如图所示,则下列结论正确的是()A.k2时,kx+b02.已知一次函数y=kx+b(k,b是常数,k0),x与y的部分对应值如下表所示:x-2-10123y3210-1-2则不等式kx+b0的解集是()A.x1C.x03.如图,以两条直线l1,l2的交点坐标为解的方程组是()A.x-y=1,2x-y=1B.x-y=-1,2x-y=-1C.x-y=-1,2x-y=1D.x-y=1,2x-y=-14.若方程组x+y=2,2x+2y=3没有解,则直线y=-x+2和直线y=-x+32在同一平面直角坐标系中的位置关系

2、是()A.重合B.平行C.相交D.以上三种情况都有可能5.已知关于x的方程kx+b=0的解为x=3,则直线y=kx+b与x轴交点的坐标为.6.如图,直线l1:y=x+1与直线l2:y=mx+n相交于点P(a,2),则关于x的不等式x+1mx+n的解集为.7.“绿水青山就是金山银山”,某村为了绿化荒山,计划在植树节当天种植柏树和杉树.经调查,购买2棵柏树和3棵杉树共需850元;购买3棵柏树和2棵杉树共需900元.(1)求柏树和杉树的单价各是多少元;(2)本次绿化荒山,需购买柏树和杉树共80棵,且柏树的棵数不少于杉树的2倍,要使此次购树费用最少,柏树和杉树各需购买多少棵?最少费用为多少元?8.过点

3、(0,-2)的直线l1:y1=kx+b(k0)与直线l2:y2=x+1交于点P(2,m).(1)写出使得y10,w随a的增大而增大.又a为整数,当a=54时,w最小=14700,此时,80-a=26,即购买柏树54棵,杉树26棵时,购树总费用最少,最少为14700元.8.解(1)根据题图,得当y1y2时,x2.(2)由题图可知点P的横坐标为2,代入y2=x+1,得y2=3.P(2,3).把点P(2,3),点(0,-2)代入y1=kx+b,得2k+b=3,b=-2,解得k=52,b=-2.y1=52x-2.9.解(1)设l1的解析式为y1=k1x+2(k10),由题图得17=500k1+2,解得

4、k1=0.03.所以y1=0.03x+2(0x2000).设l2的解析式为y2=k2x+20(k20),由题图得26=500k2+20,解得k2=0.012.所以y2=0.012x+20(0x2000).(2)当x=1000时,两种灯的费用分别为y1=0.03x+2=32(元),y2=0.012x+20=32(元),所以当照明时间为1000h时,两种灯的费用相等.10.解(1)y=-3x+3,令y=0,得-3x+3=0.x=1.D(1,0).(2)设直线l2的解析式为y=kx+b(k0).由题图知x=4,y=0;x=3,y=-32,4k+b=0,3k+b=-32,解得k=32,b=-6.故直线

5、l2的解析式为y=32x-6.(3)由y=-3x+3,y=32x-6,解得x=2,y=-3.C(2,-3).AD=3,SADC=123|-3|=92.(4)P(6,3).二、创新应用11.解(1)1台A型机器人和1台B型机器人每时各分拣垃圾x吨和y吨,由题意可知(2x+5y)2=3.6,(3x+2y)5=8,解得x=0.4,y=0.2.答:1台A型机器人和1台B型机器人每时各分拣垃圾0.4吨和0.2吨.(2)由题意可知,0.4a+0.2b=20,则b=100-2a(10a45).(3)当10a30时,40b80,w=20a+0.812(100-2a)=0.8a+960,当a=10时,w有最小值,此时w=968;当30a35时,30b40,w=0.920a+0.812(100-2a)=-1.2a+960,当a=35时,w有最小值,此时w=918;当35a45时,10b30,w=0.920a+12(100-2a)=-6a+1200,当a=45时,w有最小值,此时w=930.综上可知,当购买A型机器人35台,B型机器人30台时,购买总费用w最少,最少为918万元.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 语文

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1