1、专题五十六 圆锥曲线的综合问题【高频考点解读】1.掌握解决直线与椭圆、直线与抛物线的位置关系的思想方法2.了解圆锥曲线的简单应用3.理解数形结合思想【热点题型】题型一 直线与圆锥曲线的位置关系例1、如图,点F1(c,0),F2(c,0)分别是椭圆C:1(ab0)的左、右焦点,过点F1作x轴的垂线交椭圆C的上半部分于点P,过点F2作直线PF2的垂线交直线x于点Q.(1)如果点Q的坐标是(4,4),求此时椭圆C的方程;(2)证明:直线PQ与椭圆C只有一个交点解法二设直线x与x轴交于点M.由条件知,P.【提分秘籍】 1过抛物线外一点总有三条直线和抛物线有且只有一个公共点:两条切线和一条与对称轴平行或
2、重合的直线2经过抛物线上一点总有两条直线与抛物线有且只有一个公共点:一条切线和一条与对称轴平行或重合的直线3过抛物线内一点只有一条直线与抛物线有且只有一个公共点:一条与对称轴平行或重合的直线4. 判断直线与圆锥曲线公共点的个数或求交点问题有两种常用方法(1)代数法,即联立直线与圆锥曲线方程可得到一个关于x、y的方程组,消去y(或x)得一元方程,此方程根的个数即为交点个数,方程组的解即为交点坐标;(2)几何法,即画出直线与圆锥曲线的图象,根据图象判断公共点个数【举一反三】在平面直角坐标系xOy中,已知椭圆C1:1(ab0)的左焦点为F1(1,0),且点P(0,1)在C1上(1)求椭圆C1的方程;
3、(2)设直线l同时与椭圆C1和抛物线C2:y24x相切,求直线l的方程【热点题型】题型二 圆锥曲线的弦长问题例2、设过原点的直线l与抛物线y24(x1)交于A,B两点,且以AB为直径的圆恰好过抛物线焦点F.求:(1)直线l的方程;(2)|AB|的长【解析】(1)设直线l:ykx,抛物线的焦点为F(2,0),则【提分秘籍】1.当直线与圆锥曲线相交时:涉及弦长问题,常用“根与系数的关系”设而不求计算弦长(即应用弦长公式);涉及弦长的中点问题,常用“点差法”设而不求,将弦所在直线的斜率、弦的中点坐标联系起来,相互转化同时还应充分挖掘题目中的隐含条件,寻找量与量间的关系灵活转化,往往就能事半功倍解题的
4、主要规律可以概括为“联立方程求交点,韦达定理求弦长,根的分布找范围,曲线定义不能忘”2利用弦长公式求弦长要注意斜率k不存在的情形,若k不存在时,可直接求交点坐标再求弦长3对于中点弦问题,常用的解题方法是平方差法其解题步骤为:(1)设点:即设出弦的两端点坐标;(2)代入:即代入圆锥曲线方程;(3)作差:即两式相减,再用平方差公式把上式展开;(4)整理:即转化为斜率与中点坐标的关系式,然后求解【举一反三】已知F1、F2为椭圆1的两个焦点,过F1的直线交椭圆于A、B两点若|F2A|F2B|12,则|AB|_.解析:由题意知(|AF1|AF2|)(|BF1|BF2|)|AB|AF2|BF2|2a2a,
5、又由a5,可得|AB|(|BF2|AF2|)20,即|AB|8. 答案:8 【热点题型】题型三 定点、定值的探索与证明例3、(2013年高考安徽卷)设椭圆E:1的焦点在x轴上(1)若椭圆E的焦距为1,求椭圆E的方程;(2)设F1,F2分别是椭圆E的左、右焦点,P为椭圆E上第一象限内的点,直线F2P交y轴于点Q,并且F1PF1Q.证明:当a变化时,点P在某定直线上【提分秘籍】1求定值问题常见的方法有两种(1)从特殊入手,求出定值,再证明这个值与变量无关;(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值2定点的探索与证明问题 (1)探索直线过定点时,可设出直线方程为ykxb,然后利
6、用条件建立b、k等量关系进行消元,借助于直线系的思想找出定点;(2)从特殊情况入手,先探求定点,再证明与变量无关【举一反三】椭圆E:1(ab0)的焦点到直线x3y0的距离为,离心率为,抛物线G:y22px(p0)的焦点与椭圆E的焦点重合,斜率为k的直线l过G的焦点与E交于A,B,与G交于C,D.(1)求椭圆E及抛物线G的方程;(2)是否存在常数,使为常数,若存在,求的值,若不存在,说明理由直线l的方程yk(x2)与抛物线G的方程联立得k2x2(4k28)x4k20,x3x4,|CD|x3x44,要使为常数,则204,得,故存在,使为常数.【热点题型】题型四 圆锥曲线中探索性问题 例4、(201
7、3年高考江西卷)(本题满分13分)如图,椭圆C:1(ab0)经过点P,离心率e,直线l的方程为x4.(1)求椭圆C的方程;(2)AB是经过右焦点F的任一弦(不经过点P),设直线AB与直线l相交于点M,记PA,PB,PM的斜率分别为k1,k2,k3.问:是否存在常数,使得k1k2k3?若存在,求的值;若不存在,说明理由所以k1k22k,11分代入得k1k22k2k1,12分又k3k,所以k1k22k3.故存在常数2符合题意13分【提分秘籍】 圆锥曲线中的探索性问题是高考命题的热点,主要以解答题的形式出现,难度较大,一般作为压轴题,解决此类问题往往采用“假设反证法”或“假设检验法”,也可先用特殊情
8、况得到所求值,再给出一般性的证明,着重考查学生的分析问题与解决综合问题的能力【高考风向标】1(2014全国卷)已知抛物线C:y22px(p0)的焦点为F,直线y4与y轴的交点为P,与C的交点为Q,且|QF|PQ|.(1)求C的方程;(2)过F的直线l与C相交于A,B两点,若AB的垂直平分线l与C相交于M,N两点,且A,M,B,N四点在同一圆上,求l的方程【解析】解:(1)设Q(x0,4),代入y22px,得x0,所以|PQ|,|QF|x0.由题设得,解得p2(舍去)或p2,所以C的方程为y24x.2(2014安徽卷)如图14,已知两条抛物线E1:y22p1x(p10)和E2:y22p2x(p2
9、0),过原点O的两条直线l1和l2,l1与E1,E2分别交于A1,A2两点,l2与E1,E2分别交于B1,B2两点图14(1)证明:A1B1A2B2;(2)过O作直线l(异于l1,l2)与E1,E2分别交于C1,C2两点,记A1B1C1与A2B2C2的面积分别为S1与S2,求的值 3(2014北京卷)已知椭圆C:x22y24.(1)求椭圆C的离心率;(2)设O为原点,若点A在椭圆C上,点B在直线y2上,且OAOB,试判断直线AB与圆x2y22的位置关系,并证明你的结论4(2014福建卷)已知双曲线E:1(a0,b0)的两条渐近线分别为l1:y2x,l2:y2x.(1)求双曲线E的离心率(2)如
10、图16,O为坐标原点,动直线l分别交直线l1,l2于A,B两点(A,B分别在第一、四象限),且OAB的面积恒为8.试探究:是否存在总与直线l有且只有一个公共点的双曲线E?若存在,求出双曲线E的方程;若不存在,说明理由图16 (2)由(1)知,双曲线E的方程为1.设直线l与x轴相交于点C.当lx轴时,若直线l与双曲线E有且只有一个公共点,则|OC|a,|AB|4a.又因为OAB的面积为8,方法二:(1)同方法一(2)由(1)知,双曲线E的方程为1.设直线l的方程为xmyt,A(x1,y1),B(x2,y2)依题意得m.由得y1, 同理得y2.设直线l与x轴相交于点C,则C(t,0)由SOAB|O
11、C|y1y2|8,得|t|8.所以t24|14m2|4(14m2)由得(4m21)y28mty4(t2a2)0.因为4m210,直线l与双曲线E有且只有一个公共点当且仅当64m2t216(4m21)(t2a2)0,即4m2a2t2a20, 即4m2a24(14m2)a20,即(14m2)(a24)0,所以a24,因此,存在总与l有且只有一个公共点的双曲线E,且E的方程为1.由(1)得双曲线E的方程为1,由得(4k2) x22kmxm24a20.因为4k20,直线l与双曲线E有且只有一个公共点当且仅当4k2m24(4k2)(m24a2)0,即(k24)(a24)0,所以a24,所以双曲线E的方程
12、为1.当lx轴时,由OAB的面积等于8可得l:x2,又易知l:x2与双曲线E:1有且只有一个公共点综上所述,存在总与l有且只有一个公共点的双曲线E,且E的方程为1.5(2014湖北卷)在平面直角坐标系xOy中,点M到点F(1,0)的距离比它到y轴的距离多1.记点M的轨迹为C.(1)求轨迹C的方程;(2)设斜率为k的直线l过定点P(2,1),求直线l与轨迹C恰好有一个公共点、两个公共点、三个公共点时k的相应取值范围 (i)若由解得k.即当k(,1)时,直线l与C1没有公共点,与C2有一个公共点故此时直线l与轨迹C恰好有一个公共点(ii)若或由解得k或k0,且x2,y2,从而|PQ|22.设点A到
13、直线PQ的距离为d,则点B到直线PQ的距离也为d,所以2d.因为点A,B在直线mx2y0的异侧,所以(mx12y1)(mx22y2)0,于是|mx12y1|mx22y2|mx12y1mx22y2|,从而2d.又因为|y1y2|,所以2d.故四边形APBQ的面积S|PQ|2d2.而00)的右焦点为F,点A,B分别在C的两条渐近线上,AFx轴,ABOB,BFOA(O为坐标原点)图17(1)求双曲线C的方程;(2)过C上一点P(x0,y0)(y00)的直线l:y0y1与直线AF相交于点M,与直线x相交于点N.证明:当点P在C上移动时,恒为定值,并求此定值【解析】解:(1)设F(c,0),因为b1,所
14、以c.由题意,直线OB的方程为yx,直线BF的方程为y(xc),所以B.又直线OA的方程为yx,则A,所以kAB.又因为ABOB,所以1,解得a23,故双曲线C的方程为y21.(2)由(1)知a,则直线l的方程为y0y1(y00),即y(y00)因为直线AF的方程为x2,所以直线l与AF的交点为M,直线l与直线x的交点为N,则.又P(x0,y0)是C上一点,则y1,代入上式得,所以,为定值8(2014辽宁卷)圆x2y24的切线与x轴正半轴,y轴正半轴围成个三角形,当该三角形面积最小时,切点为P(如图16所示)双曲线C1:1过点P且离心率为.图16(1)求C1的方程;(2)椭圆C2过点P且与C1
15、有相同的焦点,直线l过C2的右焦点且与C2交于A,B两点若以线段AB为直径的圆过点P,求l的方程【解析】解:(1)设切点坐标为(x0,y0)(x00,y00),则切线斜率为,切线方程为yy0(xx0),即x0xy0y4,此时两个坐标轴的正半轴与切线的交点分别为,.故其围成的三角形的面积S.由xy42x0y0知,当且仅当x0y0时x0y0有最大值2,此时S有最小值4,因此点P的坐标为(,)由题意知解得a21,b22,故C1的方程为x21.(2)由(1)知C2的焦点坐标为(,0),(,0),由此可设C2的方程为1,其中b10.由P(,)在C2上,得1,解得b3,因此C2的方程为1.显然,l不是直线
16、y0.设直线l的方程为xmy,点A(x1,y1),B(x2,y2),由得(m22)y22 my30.又y1,y2是方程的根,因此由x1my1,x2my2,得因为(x1,y1),(x2,y2),由题意知0,所以x1x2(x1x2)y1y2(y1y2)40,将代入式整理得2m22 m4 110,解得m1或m1.因此直线l的方程为x(1)y0或x(1)y0.9(2014新课标全国卷 已知点A(0,2),椭圆E:1(ab0)的离心率为,F是椭圆E的右焦点,直线AF的斜率为,O为坐标原点(1)求E的方程;(2)设过点A的动直线l与E相交于P,Q两点,当OPQ的面积最大时,求l的方程【解析】解:(1)设F
17、(c,0),由条件知,得c.又,所以a2,b2a2c21.故E的方程为y21.(2)当lx轴时不合题意,故可设l:ykx2,P(x1,y1),Q(x2,y2)将ykx2代入y21得(14k2)x216kx120,当16(4k23)0,即k2时,x1,2,从而|PQ|x1x2|.又点O到直线l的距离d.所以OPQ的面积SOPQd|PQ|.设t,则t0,SOPQ.因为t4,当且仅当t2,即k时等号成立,满足0,所以,当OPQ的面积最大时,k,l的方程为yx2或yx2.10(2014新课标全国卷 设F为抛物线C:y23x的焦点,过F且倾斜角为30的直线交C于A,B两点,O为坐标原点,则OAB的面积为
18、()A. B. C. D.11(2014新课标全国卷 设F1,F2分别是椭圆C:1(ab0)的左、右焦点,M是C上一点且MF2与x轴垂直,直线MF1与C的另一个交点为N.(1)若直线MN的斜率为,求C的离心率;(2)若直线MN在y轴上的截距为2,且|MN|5|F1N|,求a,b.【解析】解:(1)根据c及题设知M,2b23ac.将b2a2c2代入2b23ac,解得,2(舍去)故C的离心率为.12(2014山东卷)已知抛物线C:y22px(p0)的焦点为F,A为C上异于原点的任意一点,过点A的直线l交C于另一点B,交x轴的正半轴于点D,且有|FA|FD|.当点A的横坐标为3时,ADF为正三角形(
19、1)求C的方程(2)若直线l1l,且l1和C有且只有一个公共点E.证明直线AE过定点,并求出定点坐标ABE的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由【解析】解:(1)由题意知F.设D(t,0)(t0),则FD的中点为.因为|FA|FD|,由抛物线的定义知3,解得t3p或t3(舍去)由3,解得p2,所以抛物线C的方程为y24x.(2)证明:由(1)知F(1,0)设A(x0,y0)(x0y00),D(xD,0)(xD0)因为|FA|FD|,则|xD1|x01,代入抛物线方程得y2y84x00,所以y0y1,13(2014陕西卷)如图15所示,曲线C由上半椭圆C1:1(ab0,
20、y0)和部分抛物线C2:yx21(y0)连接而成,C1与C2的公共点为A,B,其中C1的离心率为.(1)求a,b的值;(2)过点B的直线l与C1,C2分别交于点P,Q(均异于点A,B),若APAQ,求直线l的方程图15【解析】解:(1)在C1,C2的方程中,令y0,可得b1,且A(1,0),B(1,0)是上半椭圆C1的左、右顶点设C1的半焦距为c,由及a2c2b21得a2,a2,b1.(2)方法一:由(1)知,上半椭圆C1的方程为x21(y0)易知,直线l与x轴不重合也不垂直,设其方程为yk(x1)(k0),代入C1的方程,整理得(k24)x22k2xk240.(*)14(2014四川卷)已知
21、椭圆C:1(ab0)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形(1)求椭圆C的标准方程(2)设F为椭圆C的左焦点,T为直线x3上任意一点,过F作TF的垂线交椭圆C于点P,Q.证明:OT平分线段PQ(其中O为坐标原点);当最小时,求点T的坐标【解析】解:(1)由已知可得解得a26,b22,所以椭圆C的标准方程是1.(2)证明:由(1)可得,F的坐标是(2,0),设T点的坐标为(3,m),故当最小时,T点的坐标是(3,1)或(3,1)15(2014天津卷)设椭圆1(ab0)的左、右焦点分别为F1,F2,右顶点为A,上顶点为B.已知|AB|F1F2|.(1)求椭圆的离心率;(2)设P为
22、椭圆上异于其顶点的一点,以线段PB为直径的圆经过点F1,经过原点O的直线l与该圆相切,求直线l的斜率 设直线l的斜率为k,依题意,直线l的方程为ykx.由l与圆相切,可得r,即c,整理得k28k10,解得k4,所以直线l的斜率为4或4.16(2014浙江卷)如图16,设椭圆C:1(ab0),动直线l与椭圆C只有一个公共点P,且点P在第一象限(1)已知直线l的斜率为k,用a,b,k表示点P的坐标;(2)若过原点O的直线l1与l垂直,证明:点P到直线l1的距离的最大值为ab.图16【随堂巩固】 1过点P(4,4)且与双曲线1只有一个公共点的直线有()A1条B2条C3条 D4条解析:结合图形知,过P
23、(4,4)与双曲线只有一个公共点的直线,有两条与双曲线相切,另两条与渐近线平行,共4条答案:D2已知以F1(2,0),F2(2,0)为焦点的椭圆与直线xy40有且仅有一个交点,则椭圆的长轴长为()A3 B2C2 D.3已知双曲线1的右焦点为F,若过点F的直线与双曲线的右支有且只有一个交点,则此直线斜率的取值范围是()A. B(,) C.D,解析:由题意知,F(4,0),双曲线的两条渐近线方程为yx.当过点F的直线与渐近线平行时,满足与右支只有一个交点,画出图象,数形结合可知应选C.答案:C4直线4kx4yk0与抛物线y2x交于A,B两点,若|AB|4,则弦AB的中点到直线x0的距离等于()A.
24、 B2C. D45斜率为的直线与双曲线1恒有两个公共点,则双曲线离心率的取值范围是()A2,) B(2,)C(1,) D(,)解析:要使直线与双曲线恒有两个公共点,则渐近线的斜率的绝对值应大于,所以,e2,即e(2,)故选B.答案:B6已知抛物线y28x的焦点为F,直线yk(x2)与此抛物线相交于P,Q两点,则()A. B1C2 D47已知F1为椭圆C:y21的左焦点,直线l:yx1与椭圆C交于A、B两点,则|F1A|F1B|的值为_8直线l:xy0与椭圆y21相交于A、B两点,点C是椭圆上的动点,则ABC面积的最大值是_9已知双曲线1的离心率为p,焦点为F的抛物线y22px与直线yk(x)交
25、于A, B两点,且p,则k的值为_10已知圆C:(x)2y216,点A(,0),Q是圆上一动点,AQ的垂直平分线交CQ于点M,设点M的轨迹为E.(1)求轨迹E的方程;(2)过点P(1,0)的直线l交轨迹E于两个不同的点A,B,AOB(O是坐标原点)的面积S,求直线AB的方程11.如图所示,已知点A(1,)是离心率为的椭圆C:1(ab0)上的一点,斜率为的直线BD交椭圆C于B、D两点,且A、B、D三点不重合(1)求椭圆C的方程;(2)ABD的面积是否存在最大值;若存在,求出这个最大值;若不存在,请说明理由;(3)求证:直线AB、AD斜率之和为定值 12如图所示,椭圆C:1(ab0),A1、A2为椭圆C的左、右顶点(1)设F1为椭圆C的左焦点,证明:当且仅当椭圆C上的点P在椭圆的左、右顶点时,|PF1|取得最小值与最大值;(2)若椭圆C上的点到焦点的距离的最大值为3,最小值为1,求椭圆C的标准方程;(3)若直线l:ykxm与(2)中所述椭圆C相交于A、B两点(A、B不是左、右顶点),且满足AA2BA2,求证:直线l过定点,并求出该定点的坐标 (3)如图所示,设A(x1,y1),B(x2,y2),联立得(34k2)x28mkx4(m23)0,则又y1y2(kx1m) (kx2m)k2x1x2mk(x1x2)m2.