1、一基础题组1. 【2014年.浙江卷.理12】随机变量的取值为0,1,2,若,则_. 2. 【2011年.浙江卷.理9】有5本不同的书,其中语文书2本,数学书2本,物理书1本.若将其随机的并排摆放到书架的同一层上,则同一科目的书都不相邻的概率(A) (B) (C) D【答案】B 【解析】:5本不同的书并排摆放到书架的同一层上有,每种摆放方法等可能,同一科目的书都不相邻的摆放有,概率,故选B3. 【2007年.浙江卷.理5】已知随机变量服从正态分布,则(A)0.16 (B)0.32 (C)0.68 (D)0.84【答案】A【解析】,故选A.4. 【2007年.浙江卷.理15】随机变量的分布列如下
2、:-101其中成等差数列.若,则的值是_.【答案】 【解析】因为成等差数列,所以,又因为 , 二能力题组1. 【2014年.浙江卷.理9】.已知甲盒中仅有1个球且为红球,乙盒中有个红球和个篮球,从乙盒中随机抽取个球放入甲盒中.(a)放入个球后,甲盒中含有红球的个数记为;(b)放入个球后,从甲盒中取1个球是红球的概率记为.则A. B.C. D.答案:解析:,故,由上面比较可知,故选考点:独立事件的概率,数学期望.2. 【2013年.浙江卷.理19】(本题满分14分)设袋子中装有a个红球,b个黄球,c个蓝球,且规定:取出一个红球得1分,取出一个黄球得2分,取出一个蓝球得3分(1)当a3,b2,c1
3、时,从该袋子中任取(有放回,且每球取到的机会均等)2个球,记随机变量为取出此2球所得分数之和,求的分布列;(2)从该袋子中任取(每球取到的机会均等)1个球,记随机变量为取出此球所得分数若E,D,求abc. P(6),所以的分布列为23456P(2)由题意知的分布列为123P所以E(),D(),化简得解得a3c,b2c,故abc321. 3. 【2012年.浙江卷.理19】已知箱中装有4个白球和5个黑球,且规定:取出一个白球得2分,取出一个黑球得1分现从该箱中任取(无放回,且每球取到的机会均等)3个球,记随机变量X为取出此3球所得分数之和 (1)求X的分布列;(2)求X的数学期望E(X)【答案】
4、(1)X的分布列为X3456P(2)所以X的分布列为X3456P(2)由(1)知E(X)3P(X3)4P(X4)5P(X5)6P(X6)4. 【2011年.浙江卷.理15】某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历,假定该毕业生得到甲公司面试的概率为,得到乙、丙两公司面试的概率为,且三个公司是否让其面试是相互独立的。记为该毕业生得到面试得公司个数。若,则随机变量的数学期望 5. 【2010年.浙江卷.理17】有4位同学在同一天的上、下午参加“身高与体重”、“立定跳远”、“肺活量”、“握力”、“台阶”五个项目的测试,每位同学上、下午各测试一个项目,且不重复. 若上午不测“握力
5、”项目,下午不测“台阶”项目,其余项目上、下午都各测试一人. 则不同的安排方式共有_种(用数字作答).【答案】264【解析】:本题主要考察了排列与组合的相关知识点,突出对分类讨论思想和数学思维能力的考察,属较难题6. 【2010年.浙江卷.理19】(本题满分l4分)如图,一个小球从M处投入,通过管道自上而下落A或B或C。已知小球从每个叉口落入左右两个 管道的可能性是相等的某商家按上述投球方式进行促销活动,若投入的小球落到A,B,C,则分别设为l,2,3等奖(I)已知获得l,2,3等奖的折扣率分别为50,70,90记随变量为获得k(k=1,2,3)等奖的折扣率,求随机变量的分布列及期望;(II)
6、若有3人次(投入l球为l人次)参加促销活动,记随机变量为获得1等奖或2等奖的人次,求 ()解:由题意得的分布列为507090p7. 【2009年.浙江卷.理19】(本题满分14分)在这个自然数中,任取个数 (I)求这个数中恰有个是偶数的概率; (II)设为这个数中两数相邻的组数(例如:若取出的数为,则有两组相邻的数和,此时的值是)求随机变量的分布列及其数学期望解析:(I)记“这3个数恰有一个是偶数”为事件A,则; (II)随机变量的取值为的分布列为012P所以的数学期望为 8, 【2008年.浙江卷.理19】(本题14分)一个袋中有若干个大小相同的黑球、白球和红球。已知从袋中任意摸出1个球,得
7、到黑球的概率是;从袋中任意摸出2个球,至少得到1个白球的概率是。 ()若袋中共有10个球,(i)求白球的个数; (ii)从袋中任意摸出3个球,记得到白球的个数为,求随机变量的数学期望。()求证:从袋中任意摸出2个球,至少得到1个黑球的概率不大于。并指出袋中哪种颜色的球个数最少。【答案】()(i)5;(ii)随机变量的分布列是0123(ii)随机变量的取值为0,1,2,3,分布列是0123的数学期望()证明:设袋中有个球,其中个黑球,由题意得,所以,故记“从袋中任意摸出两个球,至少有1个黑球”为事件B,则所以白球的个数比黑球多,白球个数多于,红球的个数少于故袋中红球个数最少三拔高题组1. 【20
8、06年.浙江卷.理18】甲、乙两袋装有大小相同的红球和白球,甲袋装有2个红球,2个白球;乙袋装有2个红球,n个白球.两甲,乙两袋中各任取2个球.()若n=3,求取到的4个球全是红球的概率;()若取到的4个球中至少有2个红球的概率为,求n. 所以,化简,得解得,或(舍去),故 .2. 【2005年.浙江卷.理19】袋子A和B中装有若干个均匀的红球和白球,从A中摸出一个红球的概率是,从B中摸出一个红球的概率为p () 从A中有放回地摸球,每次摸出一个,有3次摸到红球即停止(i)求恰好摸5次停止的概率;(ii)记5次之内(含5次)摸到红球的次数为,求随机变量的分布率及数学期望E () 若A、B两个袋子中的球数之比为12,将A、B中的球装在一起后,从中摸出一个红球的概率是,求p的值随机变量的分布列是0123P 的数学期望是E()= 0+1+2+3=()设袋子A中有m个球,则袋子B中有2m个球,由,得p=.