1、【2010年高考试题】(2010辽宁理数)(3)两个实习生每人加工一个零件加工为一等品的概率分别为和,两个零件是 否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为(A) (B) (C) (D)(2010江西理数)11.一位国王的铸币大臣在每箱100枚的硬币中各掺入了一枚劣币,国王怀疑大臣作弊,他用两种方法来检测。方法一:在10箱子中各任意抽查一枚;方法二:在5箱中各任意抽查两枚。国王用方法一、二能发现至少一枚劣币的概率分别为和,则A. = B. D。以上三种情况都有可能【答案】B【解析】考查不放回的抽球、重点考查二项分布的概率。本题是北师大版新课标的课堂作业,作为旧大纲的最后一年高
2、考,本题给出一个强烈的导向信号。方法一:每箱的选中的概率为,总概率为;同理,方法二:每箱的选中的概率为,总事件的概率为,作差得。1. (2010湖北理数)4.投掷一枚均匀硬币和一枚均匀骰子各一次,记“硬币正面向上”为事件A,“骰子向上的点数是3”为事件B,则事件A,B中至少有一件发生的概率是A B C D (2010重庆理数)(13)某篮球队员在比赛中每次罚球的命中率相同,且在两次罚球中至多命中一次的概率为,则该队员每次罚球的命中率为_.解析:由得(2010湖南理数)11在区间上随机取一个数x,则的概率为 3. (2010江苏卷)3、盒子中有大小相同的3只白球,1只黑球,若从中随机地摸出两只球
3、,两只球颜色不同的概率是_ _.解析考查古典概型知识。(2010全国卷2理数)(20)(本小题满分12分) 如图,由M到N的电路中有4个元件,分别标为T1,T2,T3,T4,电流能通过T1,T2,T3的概率都是p,电流能通过T4的概率是0.9电流能否通过各元件相互独立已知T1,T2,T3中至少有一个能通过电流的概率为0.999 ()求p; ()求电流能在M与N之间通过的概率; ()表示T1,T2,T3,T4中能通过电流的元件个数,求的期望 【命题意图】本试题主要考查独立事件的概率、对立事件的概率、互斥事件的概率及数学期望,考查分类讨论的思想方法及考生分析问题、解决问题的能力.【参考答案】【点评
4、】概率与统计也是每年的必考题,但对考试难度有逐年加强的趋势,已经由原来解答题的前3题的位置逐渐后移到第20题的位置,对考生分析问题的能力要求有所加强,这应引起高度重视.(2010辽宁理数)(18)(本小题满分12分) 为了比较注射A, B两种药物后产生的皮肤疱疹的面积,选200只家兔做试验,将这200只家兔随机地分成两组,每组100只,其中一组注射药物A,另一组注射药物B。 ()甲、乙是200只家兔中的2只,求甲、乙分在不同组的概率;()下表1和表2分别是注射药物A和B后的试验结果.(疱疹面积单位:mm2)表1:注射药物A后皮肤疱疹面积的频数分布表()完成下面频率分布直方图,并比较注射两种药物
5、后疱疹面积的中位数大小;()完成下面22列联表,并回答能否有99.9%的把握认为“注射药物A后的疱疹面积与注射药物B后的疱疹面积有差异”.表3: 解:()甲、乙两只家兔分在不同组的概率为 4分()(i)图注射药物A后皮肤疱疹面积的频率分布直方图 图注射药物B后皮肤疱疹面积的频率分布直方图可以看出注射药物A后的疱疹面积的中位数在65至70之间,而注射药物B后的疱疹面积的中位数在70至75之间,所以注射药物A后疱疹面积的中位数小于注射药物B后疱疹面积的中位数。 8分(ii)表3:由于K210.828,所以有99.9%的把握认为“注射药物A后的疱疹面积于注射药物B后的疱疹面积有差异”。 12分(20
6、10北京理数)(17)(本小题共13分) 某同学参加3门课程的考试。假设该同学第一门课程取得优秀成绩的概率为,第二、第三门课程取得优秀成绩的概率分别为,(),且不同课程是否取得优秀成绩相互独立。记为该生取得优秀成绩的课程数,其分布列为0123()求该生至少有1门课程取得优秀成绩的概率;()求,的值;()求数学期望。(II)由题意知 整理得 ,由,可得,.(2010四川理数)(17)(本小题满分12分)某种有奖销售的饮料,瓶盖内印有“奖励一瓶”或“谢谢购买”字样,购买一瓶若其瓶盖内印有“奖励一瓶”字样即为中奖,中奖概率为.甲、乙、丙三位同学每人购买了一瓶该饮料。()求甲中奖且乙、丙都没有中奖的概
7、率;()求中奖人数的分布列及数学期望E.(2010天津理数)(18).(本小题满分12分)某射手每次射击击中目标的概率是,且各次射击的结果互不影响。()假设这名射手射击5次,求恰有2次击中目标的概率()假设这名射手射击5次,求有3次连续击中目标。另外2次未击中目标的概率;()假设这名射手射击3次,每次射击,击中目标得1分,未击中目标得0分,在3次射击中,若有2次连续击中,而另外1次未击中,则额外加1分;若3次全击中,则额外加3分,记为射手射击3次后的总的分数,求的分布列。()解:设“第次射击击中目标”为事件;“射手在5次射击中,有3次连续击中目标,另外2次未击中目标”为事件,则 = =所以的分
8、布列是(2010全国卷1理数)(18)(本小题满分12分) 投到某杂志的稿件,先由两位初审专家进行评审若能通过两位初审专家的评审,则予以录用;若两位初审专家都未予通过,则不予录用;若恰能通过一位初审专家的评审,则再由第三位专家进行复审,若能通过复审专家的评审,则予以录用,否则不予录用设稿件能通过各初审专家评审的概率均为0.5,复审的稿件能通过评审的概率为0.3各专家独立评审 (I)求投到该杂志的1篇稿件被录用的概率; (II)记表示投到该杂志的4篇稿件中被录用的篇数,求的分布列及期望 (2010山东理数)=,所以的分布列为234数学期望=+4=。【命题意图】本题考查了相互独立事件同时发生的概率
9、、考查了离散型随机变量的分布列以及数学期望的知识,考查了同学们利用所学知识解决实际问题的能力。(2010江苏卷)22.本小题满分10分)某工厂生产甲、乙两种产品,甲产品的一等品率为80%,二等品率为20%;乙产品的一等品率为90%,二等品率为10%。生产1件甲产品,若是一等品则获得利润4万元,若是二等品则亏损1万元;生产1件乙产品,若是一等品则获得利润6万元,若是二等品则亏损2万元。设生产各种产品相互独立。(1) 记X(单位:万元)为生产1件甲产品和1件乙产品可获得的总利润,求X的分布列;(2) 求生产4件甲产品所获得的利润不少于10万元的概率。解析 本题主要考查概率的有关知识,考查运算求解能力。满分10分。