1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版九年级数学上册期中考专项测评试题 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、在一幅长50cm,宽40cm的矩形风景画的四周镶一条外框,制成一
2、幅矩形挂图(如图所示),如果要使整个挂图的面积是3000cm2,设边框的宽为xcm,那么x满足的方程是()A(502x)(402x)3000B(50+2x)(40+2x)3000C(50x)(40x)3000D(50+x)(40+x)30002、二次函数yax2+bx+c的图象如图所示,则一次函数ybx+c的图象不经过()A第一象限B第二象限C第三象限D第四象限3、使用家用燃气灶烧开同一壶水所需的燃气量(单位:)与旋钮的旋转角度(单位:度)()近似满足函数关系y=ax2+bx+c(a0).如图记录了某种家用燃气灶烧开同一壶水的旋钮角度与燃气量的三组数据,根据上述函数模型和数据,可推断出此燃气灶
3、烧开一壶水最节省燃气的旋钮角度约为()ABCD4、一元二次方程,用配方法解该方程,配方后的方程为( )ABCD5、方程y2-a有实数根的条件是()Aa0Ba0Ca0Da为任何实数二、多选题(5小题,每小题4分,共计20分)1、二次函数y=ax2+bx+c(a0)的部分图象如图所示,图象过点(1,0),对称轴为直线x=2,下列结论中正确的有() 线 封 密 内 号学级年名姓 线 封 密 外 A4a+b=0B9a+c3bC7a3b+2c0D若点A(3,y1)、点B(,y2)、点C(7,y3)在该函数图象上,则y1y3y2E若方程a(x+1)(x5)=3的两根为x1和x2,且x1x2,则x115x2
4、2、用配方法解下列方程,配方错误的是()A化为B化为C化为D化为3、已知点,下面的说法正确的是()A点与点关于轴对称,则点的坐标为B点绕原点按顺时针方向旋转后到点,则点的坐标为C点与点关于原点中心对称,则点的坐标为D点先向上平移个单位,再向右平移个单位到点,则点的坐标为4、对于二次函数,下列说法不正确的是()A图像开口向下B图像的对称轴是直线C函数最大值为0D随的增大而增大5、下面是某同学在一次数学测验中解答的填空题,其中答对的是( )A若x2=4,则x=2B若3x2=6,则x=2Cx2 + x-k=0的一个根是1,则k=2D若分式的值为零,则x=2第卷(非选择题 65分)三、填空题(5小题,
5、每小题5分,共计25分)1、在平面直角坐标系中,将点A先向右平移4个单位,再向下平移6个单位得到点B,如果点A和点B关于原点对称,那么点A的坐标是_2、如图,在RtABC中,C=90,AC=8cm,BC=2cm,点P在边AC上,以2cm/s的速度从点A向点C移动,点Q在边CB上,以1cm/s的速度从点C向点B移动点P、Q同时出发,且当一点移动到终点时,另一点也随之停止,连接PQ,当PQC的面积为3cm2时,P、Q运动的时间是_秒3、如果关于的一元二次方程的一个解是,那么代数式的值是_4、将二次函数化成一般形式,其中二次项系数为_,一次项系数为_,常数项为_5、如果关于x的方程x23x+k0(k
6、为常数)有两个相等的实数根,那么k的值是_四、解答题(5小题,每小题8分,共计40分) 线 封 密 内 号学级年名姓 线 封 密 外 1、已知关于x的方程x2+(m2)x2m0(1)求证:不论m取何值,此方程总有实数根;(2)若m为整数,且方程的一个根小于2,请写出一个满足条件的m的值2、已知关于x的一元二次方程有两个相等的实数根,求的值3、小明和小丽先后从A地出发同一直道去B地, 设小丽出发第时, 小丽、小明离B地的距离分别为、,与x之间的数表达式,与x之间的函数表达式是(1)小丽出发时,小明离A地的距离为 (2)小丽发至小明到达B地这段时间内,两人何时相距最近?最近距离是多少?4、某种商品
7、每件的进价为10元,若每件按20元的价格销售,则每月能卖出360件;若每件按30元的价格销售,则每月能卖出60件假定每月的销售件数y是销售价格x(单位:元)的一次函数(1)求y关于x的一次函数解析式;(2)当销售价格定为多少元时,每月获得的利润最大?并求此最大利润5、为培育和践行社会主义核心价值观,弘扬传统美德,学校决定购进相同数量的名著平凡的世界(简称A)和恰同学少年(简称B),其中A的标价比B的标价多25元,为此,学校划拨了1800元用于购买A,划拨了800元用于购买B(1)求A、B的标价各多少元?(2)阳光书店为支持学校的读书活动,决定将A、B两本名著的标价都降低m%后卖给学校,这样,A
8、的数量不变,B还可多买2m本,且总购书款不变,求m的值-参考答案-一、单选题1、B【解析】【分析】根据题意表示出矩形挂画的长和宽,再根据长方形的面积公式可得方程【详解】解:设边框的宽为x cm,所以整个挂画的长为(50+2x)cm,宽为(40+2x)cm,根据题意,得:(50+2x)(40+2x)=3000,故选:B【考点】本题主要考查由实际问题抽象出一元二次方程,在解决实际问题时,要全面、系统地申清问题的已知和未知,以及它们之间的数量关系,找出并全面表示问题的相等关系,设出未知数,用方程表示出已知量与未知量之间的等量关系,即列出一元二次方程2、D【解析】【分析】根据二次函数图象的开口方向、对
9、称轴判断出a、b的正负情况,再由一次函数的性质解答【详解】解:由势力的线与y轴正半轴相交可知c0,对称轴x=-0,得b0 所以一次函数ybx+c的图象经过第一、二、三象限,不经过第四象限故选:D【考点】 线 封 密 内 号学级年名姓 线 封 密 外 本题考查二次函数图象和一次函数图象的性质,要掌握它们的性质才能灵活解题3、C【解析】【分析】根据已知三点和近似满足函数关系y=ax2+bx+c(a0)可以大致画出函数图象,并判断对称轴位置在36和54之间即可选择答案.【详解】解:由图表数据描点连线,补全图象可得如图,抛物线对称轴在36和54之间,约为41,旋钮的旋转角度在36和54之间,约为41时
10、,燃气灶烧开一壶水最节省燃气,故选C,【考点】本题考查了二次函数的应用,二次函数的图象性质,熟练掌握二次函数图象的对称性质,判断对称轴位置是解题关键,综合性较强,需要有较高的思维能力,用图象法解题是本题考查的重点4、D【解析】【分析】按照配方法的步骤,移项,配方,配一次项系数一半的平方.【详解】x22xm=0,x22x=m,x22x+1=m+1,(x1)2=m+1故选D【考点】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确使用5、A【解析】【分析】根据平方的非负性可以得出a0,再进行整理即可【详解】解:方程y2a有实数根,a0(平方具有非负性),a0;故选:A【考点】此题考查了直接
11、开平方法解一元二次方程,关键是根据已知条件得出a0 线 封 密 内 号学级年名姓 线 封 密 外 二、多选题1、ABE【解析】【分析】根据抛物线的对称轴为直线x2,则有4a+b0,可得A正确;根据二次函数的对称性得到当x3时,函数值大于0,则9a+3b+c0,即9a+c3 b,可得B正确;由于x1时,y0,则ab+c0,易得c5a,所以7a-3b+2c9 a,再根据抛物线开口向下得a0,于是有7a3b+2c0,可得C错误;利用抛物线的对称性得到(3,)在抛物线上,然后利用二次函数的增减性可得D错误;作出直线 y3,然后依据函数图象进行判断可得E正确;综上即可得答案【详解】A项:x 2,4a+b
12、0,故A正确B项:抛物线与x轴的一个交点为(-1,0),对称轴为直线x=2,另一个交点为(5,0),抛物线开口向下,当x3时,y0,即9a+3b+c0,9a+c3b,故B正确C项:抛物线与x轴的一个交点为(1,0),ab+c0b4a,a+4a+c0,即c5a,7a3b+2c7a+12a10a9a,抛物线开口向下,a0,7a3b+2c0,故C错误;D项:抛物线的对称轴为x2,C(7,)在抛物线上,点(3,)与C(7,)关于对称轴x2对称,A(3,)在抛物线上,=,3 12 ,在对称轴的左侧,抛物线开口向下,y随x的增大而增大, ,故D错误E项:方程a(x+1)(x5)0的两根为x1或x5,过y3
13、作x轴的平行线,直线y3与抛物线的交点的横坐标为方程的两根,抛物线与x轴交点为(-1,0),(5,0),依据函数图象可知:15,故E正确故答案为:ABE【点睛】 线 封 密 内 号学级年名姓 线 封 密 外 本题考查了二次函数图象与系数的关系:二次函数y=ax+bx+c(a0),二次项系数a决定抛物线的开口方向和大小,当a0时,抛物线向上开口;当a0时,抛物线向下开口;一次项系数b和二次项系数 a共同决定对称轴的位置,当a与b同号时(即ab0),对称轴在y轴左;当a与b异号时(即ab0),对称轴在y轴右;常数项c决定抛物线与 y轴交点抛物线与y轴交于(0,c);抛物线与x轴交点个数由决定,=b
14、4ac0时,抛物线与x轴有2个交点;=b4ac=0时,抛物线与x轴有1个交点;= b4 ac0时,抛物线与x轴没有交点2、BD【解析】【分析】根据配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1,(3)等式两边同时加上一次项系数一半的平方即可得到结论【详解】A. 化为,正确,不符合题意;B. 化为,错误,符合题意;C. 化为,正确,不符合题意;D. 化为,错误,符合题意故选:BD【点睛】此题考查了配方法解一元二次方程,属于基础题,熟练掌握配方法的一般步骤是解题关键3、BD【解析】【分析】A、根据轴对称的性质判断即可; B、根据旋转变换的性质判断即可;C、根据中心对称的
15、性质判断即可;D、根据平移变换的性质判断即可;【详解】A、点A与点B关于 轴对称,则点B的坐标为B(-2,-3),A选项错误,不符合题意;B、点绕原点按顺时针方向旋转后到点,则点的坐标为,B选项正确,符合题意;C、点与点关于原点中心对称,则点的坐标为B(2,-3),C选项错误,不符合题意;D、点先向上平移个单位,再向右平移个单位到点,则点的坐标为,D选项正确,符合题意;故选:BD【点睛】本题考查平移变换,轴对称变换,中心对称,旋转变换等知识,解题的关键是熟练掌握平移变换,旋转变换,轴对称变换,中心对称的性质,属于常考题型4、ACD【解析】【分析】根据题目中的函数解析式,可以判断各个选项中的说法
16、是否正确【详解】解:二次函数,a20,该函数的图象开口向上,故选项A错误, 线 封 密 内 号学级年名姓 线 封 密 外 图象的对称轴是直线x1,故选项B正确,函数的最小值是y0,故选项C错误,当x1时随的增大而增大,故选项D错误,故选:A,C,D【点睛】本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答5、CD【解析】【分析】对于一元二次方程x2=4和3x2=6x分别解答即可求得x的值,从而判断是否正确;对于方程x2+x-k=0求k的值,可以将x=1代入原方程即可求得k的值;若原分式为0,则分母不能为0,即分子为0,所以x=2,当x=2时,分母也为0,所
17、以原分式不能为0【详解】解:A、若x2=4,解得:x=2或-2,故本选项错误;B、若3x2=6x,则3x2-6x=0,即3x(x-2)=0,解得:x=0或2,故本选项错误;C、将x=1代入原方程可得:k=2,故本选项正确;D、若分式的值为零,则x(x-2)=0且x0,解得x=2;故本选项正确;故选CD三、填空题1、【解析】【分析】先按题目要求对A、B点进行平移,再根据原点对称的特征:横纵坐标互为相反数进行列方程,求解【详解】设,向右平移4个单位,再向下平移6个单位得到 A、B关于原点对称,解得,故答案为:【考点】本题考查点的平移和原点对称的性质,掌握这些是解题关键2、1【解析】【分析】设P、Q
18、运动的时间是秒,根据已知条件得到cm,cm ,则cm ,根据三角形面积公式列出方程,解方程即可求解【详解】解:设P、Q运动的时间是秒,则cm,cm ,cmPQC的面积为3cm2,即,解得或(不合题意,舍去),当PQC的面积为3cm2时,P、Q运动的时间是1秒故答案为:1 线 封 密 内 号学级年名姓 线 封 密 外 【考点】本题考查了一元二次方程应用动点问题,三角形的面积,正确的理解题意是解题的关键3、【解析】【分析】根据关于的一元二次方程的一个解是,可以得到的值,然后将所求式子变形,再将的值代入,即可解答本题【详解】解:关于的一元二次方程的一个解是,故答案为:2020【考点】本题考查一元二次
19、方程的解,解答本题的关键是明确一元二次方程的解的含义4、 【解析】【分析】通过去括号,移项,可以把方程化成二次函数的一般形式,然后确定二次项系数,一次项系数,常数项【详解】y=2(x2)2变形为:y=2x2+8x8,所以二次项系数为2;一次项系数为8;常数项为8故答案为2,8,8【考点】本题考查的是二次函数的一般形式,通过去括号,移项,合并同类项,得到二次函数的一般形式,确定二次项系数,一次项系数,常数项的值5、【解析】【分析】根据判别式的意义得到=(-3)2-4k=0,然后解一元一次方程即可【详解】解:根据题意得=(-3)2-4k=0,解得k=故答案为【考点】本题考查了一元二次方程ax2+b
20、x+c=0(a0)的根的判别式=b2-4ac:当0,方程有两个不相等的实数根;当=0,方程有两个相等的实数根;当0,方程没有实数根四、解答题1、 (1)证明见解析(2)1(答案不唯一)【解析】【分析】(1)由题意知,判断其与0的关系,即可得出结论;(2)表示出方程的两根,根据要求进行求解即可 线 封 密 内 号学级年名姓 线 封 密 外 (1)证明:由题意知(m+2)20,0,关于x的方程x2+(m2)x2m0总有实数根;(2)解:由(1)知,(m+2)2,x,方程有一根小于2,m2,m2,m为整数,满足条件的m的一个值为1【点睛】本题考查了一元二次方程的根解题的关键在于利用判根公式确定方程根
21、的个数,利用公式求方程的根2、4【解析】【分析】先根据一元二次方程根的判别式可得,从而可得,再代入计算即可得【详解】解:关于的一元二次方程有两个相等的实数根,此方程根的判别式,即,则,【点睛】本题考查了一元二次方程根的判别式、代数式求值,熟练掌握一元二次方程根的判别式是解题关键3、(1)250;(2)当小丽出发第时,两人相距最近,最近距离是【解析】【分析】(1)由x=0时,根据-求得结果即可;(2)求出两人相距的函数表达式,求出最小值即可【详解】解(1)当x=0时,=2250,=2000-=2250-2000=250(m)故答案为:250(2)设小丽出发第时,两人相距,则即 线 封 密 内 号
22、学级年名姓 线 封 密 外 其中因此,当时S有最小值,也就是说,当小丽出发第时,两人相距最近,最近距离是【点睛】此题主要考查了二次函数的性质的应用,熟练掌握二次函数的性质是解答本题的关键4、 (1)(2)价格为21元时,才能使每月获得最大利润,最大利润为3630元【解析】【分析】(1)设,把,和,代入求出k、b的值,从而得出答案;(2)根据总利润=每件利润每月销售量列出函数解析式,配方成顶点式,利用二次函数的性质求解可得答案(1)解:设,把,和,代入可得,解得,则;(2)解:每月获得利润 ,当时,P有最大值,最大值为3630答:当价格为21元时,才能使每月获得最大利润,最大利润为3630元【点
23、睛】本题主要考查了一次函数解析式的求法和二次函数的应用,解题的关键是理解题意找到其中蕴含的相等关系,并据此得出函数解析式及二次函数的性质,然后再利用二次函数求最值5、(1)45元,20元;(2)35【解析】【分析】(1)设B的标价为x元,则A的标价为(x+25)元,列方程,解方程即可;(2)将A、B两本名著的新标价计算出来,根据数量单价数量单价 ,列方程求解即可【详解】解:(1)设B的标价为x元,则A的标价为(x+25)元,列方程,解方程,得x=20,经检验,x=20是原方程的根,所以x+25=45,答:A的标价是45元,B的标价是20元;(2)将A、B两本名著的标价都降低m%后,A的标价为45(1- m%)元,B的标价为20(1- m%)元,原购买数量为A:40(本),变化后的购买数量:A种40本,B种(40+2m)本, 线 封 密 内 号学级年名姓 线 封 密 外 根据题意,得4045(1- m%)+(40+2m)20(1- m%)=2600, 解得:经检验:不合题意舍去,取 答:的值为【点睛】本题考查了分式方程的应用,熟记数量单价费用是解题的关键,注意分式方程必须要验根