1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版数学八年级上册期中模拟考试试题 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、利用边长相等的正三角形和正六边形地板砖镶嵌地面,在每个顶点周围有块
2、正三角形和块正六边形地板砖,则的值为()A3或4B4或5C5或6D42、用直角三角板作ABC的边AB上的高,下列直角三角板位置摆放正确的是()ABCD3、如图,已知在四边形中,平分,则四边形的面积是()A24B30C36D424、两个直角三角板如图摆放,其中,AB与DF交于点M若,则的大小为()ABCD5、如图,已知是ABC的角平分线,是的垂直平分线,则的长为()A6B5C4D二、多选题(5小题,每小题4分,共计20分)1、下列长度的各种线段,可以组成三角形的是()A2,3,4B1,1,2C5,5,9D7,5,12、若将一副三角板按如图所示的方式放置,则下列结论正确的是() 线 封 密 内 号
3、学级年名姓 线 封 密 外 A12B如果230,则有ACDEC如果230,则有BCADD如果230,必有4C3、一幅美丽的图案,在其顶点处由四个正多边形镶嵌而成,其中三个分别为正三角形、正四边形、正六边形,则另一个不能为()A正六边形B正五边形C正四边形D正三角形4、如图,下列结论正确的是()ABCD5、在四边形ABCD中,ADBC,若DAB的平分线AE交CD于E,连接BE,且BE也平分ABC,则以下的命题中正确的是( )ABC+AD=ABB为CD中点CAEB=90DSABE=S四边形ABCD第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、用一条宽度相等的足够长的纸条打
4、一个结(如图1所示),然后轻轻拉紧、压平就可以得到如图2所示的正五边形图中,_度2、如图,在ABC中,A=60,BD、CD分别平分ABC、ACB,M、N、Q分别在DB、DC、BC的延长线上,BE、CE分别平分MBC、BCN,BF、CF分别平分EBC、ECQ,则F=_3、已知三角形的三边长为4、x、11,化简_4、将两张三角形纸片如图摆放,量得1+2+3+4=220,则5=_5、一个多边形的每一个外角都等于60,则这个多边形的内角和为_度四、解答题(5小题,每小题8分,共计40分) 线 封 密 内 号学级年名姓 线 封 密 外 1、如图,在图(1)中,猜想:_度请说明你猜想的理由如果把图1成为2
5、环三角形,它的内角和为;图2称为2环四边形,它的内角和为则2环四边形的内角和为_度;2环五边形的内角和为_度;2环n边形的内角和为_度2、如图,在等腰三角形ABC中,A=90,AB=AC=6,D是BC边的中点,点E在线段AB上从B向A运动,同时点F在线段AC上从点A向C运动,速度都是1个单位/秒,时间是t秒(0t6),连接DE、DF、EF(1)请判断EDF形状,并证明你的结论(2)以A、E、D、F四点组成的四边形面积是否发生变化?若不变,求出这个值;若变化,用含t的式子表示3、如图,AD,CE是ABC的两条高.已知AD=5,CE=4.5,AB=6.(1)求ABC的面积;(2)求BC的长4、如图
6、,已知ABC中,AB=AC,A=108,BD平分ABC求证:BC=AB+CD 5、如图,已知AC平分BAD,CEAB于E,CFAD于F,且BC=CD(1)求证:BCEDCF;(2)求证:AB+AD=2AE.-参考答案-一、单选题1、B【解析】【分析】正多边形的组合能否进行平面镶嵌,关键是看位于同一顶点处的几个角之和能否为360若能,则说明可以进行平面镶嵌;反之,则说明不能进行平面镶嵌 线 封 密 内 号学级年名姓 线 封 密 外 【详解】正三边形和正六边形内角分别为60、120,604+120=360,或602+1202=360,a=4,b=1或a=2,b=2,当a=4,b=1时,a+b=5;
7、当a=2,b=2时,a+b=4故选B【考点】解决此类题,可以记住几个常用正多边形的内角,及能够用两种正多边形镶嵌的几个组合2、D【解析】【分析】从三角形的一个顶点向底边作垂线,垂足与顶点之间的线段叫做三角形的高,根据高线的定义即可得出结论【详解】解:A、作出的是ABC中BC边上的高线,故本选项错误;B、作出的是ABC中AC边上的高线,故本选项错误;C、不能作出ABC中BC边上的高线,故本选项错误;D、作出的是ABC中AB边上的高线,故本选项正确;故选D【考点】本题考查的是作图-基本作图,熟知三角形高线的定义是解答此题的关键3、B【解析】【分析】过D作DEAB交BA的延长线于E,根据角平分线的性
8、质得到DE=CD=4,根据三角形的面积公式即可得到结论【详解】如图,过D作DEAB交BA的延长线于E,BD平分ABC,BCD=90,DE=CD=4,四边形的面积 故选B.【考点】本题考查了角平分线的性质,三角形的面积的计算,正确的作出辅助线是解题的关键4、C【解析】【分析】根据,可得再根据三角形内角和即可得出答案【详解】由图可得 线 封 密 内 号学级年名姓 线 封 密 外 ,故选:C【考点】本题考查了平行线的性质和三角形的内角和,掌握平行线的性质和三角形的内角和是解题的关键5、D【解析】【分析】根据ED是BC的垂直平分线、BD是角平分线以及A=90可求得C=DBC=ABD=30,从而可得CD
9、=BD=2AD=6,然后利用三角函数的知识进行解答即可得.【详解】ED是BC的垂直平分线,DB=DC,C=DBC,BD是ABC的角平分线,ABD=DBC,A=90,C+ABD+DBC=90,C=DBC=ABD=30,BD=2AD=6,CD=6,CE =3,故选D【考点】本题考查了线段垂直平分线的性质,三角形内角和定理,含30度角的直角三角形的性质,余弦等,结合图形熟练应用相关的性质及定理是解题的关键.二、多选题1、AC【解析】【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析【详解】解:A、 ,能构成三角形,符合题意;B、1+1=2,不能构成三角形,不符合
10、题意;C、,能构成三角形,符合题意;D、5+17,不能构成三角形,不符合题意故选AC【考点】此题主要考查了三角形三边关系,根据第三边的范围是:大于已知的两边的差,而小于两边的和是解决问题的关键2、BD【解析】【分析】根据两种三角形的各角的度数,利用平行线的判定与性质结合已知条件对各个结论逐一验证,即可得出答案【详解】 线 封 密 内 号学级年名姓 线 封 密 外 解:CABDAE90,13,故A错误230,1360CAD90+60150, D+CAD180,ACDE,故B正确,230,1360, ,不平行, 故C错误,230,1360, 由三角形的内角和定理可得: 445,故D正确故选:B,D
11、【考点】此题考查平行线的判断,三角形的内角和定理的应用,解题关键在于根据三角形的内角和来进行计算3、ABD【解析】【分析】平面镶嵌要求多边形在同一个顶点处的所有角的和为 根据平面镶嵌的要求逐一求解各选项涉及的多边形在一个顶点处的所有的角之和,从而可得答案.【详解】解: 一幅美丽的图案,在其顶点处由四个正多边形镶嵌而成,其中三个分别为正三角形、正四边形、正六边形, 在顶点处的四个角的和为: 而正三角形、正四边形、正六边形的每一个内角依次为: 当第四个多边形为正六边形时, 故符合题意;当第四个多边形为正五边形时, 故符合题意;当第四个多边形为正四边形时, 故不符合题意;当第四个多边形为正三角形时,
12、 故符合题意;故选:【考点】本题考查的是平面镶嵌,熟悉平面镶嵌时,围绕在一个顶点处的所有的角组成一个周角是解题的关键.4、AD 线 封 密 内 号学级年名姓 线 封 密 外 【解析】【分析】根据三角形的一个外角等于和它不相邻的两个内角的和作答【详解】A、1是ABC的一个外角,123,正确,符合题意;B、1是ABC的一个外角,123,选项错误,不符合题意;C、1是ABC的一个外角,123,又2是CDE的一个外角,245,选项错误,不符合题意;D、2是CDE的一个外角,245,正确,符合题意故选:AD【考点】本题主要考查了三角形的外角性质,解题关键是掌握一个外角等于和它不相邻的两个内角的和5、AB
13、CD【解析】【分析】在AB上截取AF=AD证明AEDAEF,BECBEF可证4个结论都正确【详解】解:在AB上截取AF=AD则AEDAEF(SAS)AFE=DADBC,D+C=180C=BFEBECBEF(AAS)BC=BF,故AB=BC+AD;CE=EF=ED,即E是CD中点;AEB=AEF+BEF=DEF+CEF=180=90;SAEF=SAED,SBEF=SBEC,SAEB=S四边形BCEF+S四边形EFAD=S四边形ABCD故选ABCD【考点】此题考查全等三角形的判定与性质,运用了截取法构造全等三角形解决问题,难度中等三、填空题 线 封 密 内 号学级年名姓 线 封 密 外 1、36【
14、解析】【分析】利用多边形的内角和定理和等腰三角形的性质即可解决问题【详解】解:,是等腰三角形,度,故答案为:36【考点】本题主要考查了多边形的内角和定理和等腰三角形的性质 解题关键在于知道n边形的内角和为:180(n2)2、15【解析】【分析】先由BD、CD分别平分ABC、ACB得到DBC=ABC,DCB=ACB,在ABC中根据三角形内角和定理得DBC+DCB=(ABC+ACB)=(180-A)=60,则根据平角定理得到MBC+NCB=300;再由BE、CE分别平分MBC、BCN得5+6=MBC,1=NCB,两式相加得到5+6+1=(NCB+NCB)=150,在BCE中,根据三角形内角和定理可
15、计算出E=30;再由BF、CF分别平分EBC、ECQ得到5=6,2=3+4,根据三角形外角性质得到3+4=5+F,2+3+4=5+6+E,利用等量代换得到2=5+F,22=25+E,再进行等量代换可得到F=E【详解】解:BD、CD分别平分ABC、ACB,A=60,DBC=ABC,DCB=ACB,DBC+DCB=(ABC+ACB)=(180-A)=(180-60)=60,MBC+NCB=360-60=300,BE、CE分别平分MBC、BCN,5+6=MBC,1=NCB,5+6+1=(NCB+NCB)=150,E=180-(5+6+1)=180-150=30,BF、CF分别平分EBC、ECQ,5=
16、6,2=3+4,3+4=5+F,2+3+4=5+6+E,即2=5+F,22=25+E,2F=E,F=E=30=15故答案为:15 线 封 密 内 号学级年名姓 线 封 密 外 【考点】本题考查了三角形内角和定理:三角形内角和是180也考查了三角形外角性质3、11【解析】【分析】根据三角形三边关系可求出x的取值范围,即可求解【详解】三角形的三边为4、x、11,11-4x11+4,故答案为:11【考点】本题主要考查了构成三角形三边大小的关系和去绝对值的知识,利用三角形三边关系求出x的取值范围是解答本题的关键4、40【解析】【分析】直接利用三角形内角和定理得出6+7的度数,进而得出答案【详解】如图所
17、示:1+2+6=180,3+4+7=180,1+2+3+4=220,1+2+6+3+4+7=360,6+7=140,5=180-(6+7)=40故答案为40【考点】主要考查了三角形内角和定理,正确应用三角形内角和定理是解题关键5、720【解析】【分析】先根据外角和与外角的度数求出多边形的边数,再根据多边形内角和公式计算即可【详解】多边形的每一个外角都为60,它的边数:,它的内角和:,故答案为:720【考点】 线 封 密 内 号学级年名姓 线 封 密 外 此题考查了多边形内角和与外角和,关键是正确计算多边形的边数四、解答题1、360,见解析;720,1080;【解析】【分析】连接将已知图形补全为
18、闭合四边形,根据三角形的外角性质可得,进而根据四边形的内角和即可求得;同理将2环四边形补全为五边形和三角形,2环五边形补全为六边形和四边形,2环n边形补全为和边形,根据多边形的内角和定理求解即可【详解】解:猜想:360连接,如图,2环四边形中,如图,连接则2环四边形的内角和同理2环五边形补全为六边形和四边形,则内角和为2环n边形补全为和边形,则内角和为故答案为:360,720,1080;【考点】本题考查了多边形的内角和,三角形的外角性质,将2环n边形补全为和边形是解题的关键2、(1)EDF为等腰直角三角形,证明见解析;(2)四边形AEDF面积不变,9【解析】【分析】(1)连接AD,利用等腰直角
19、三角形的性质根据SAS证明BDEADF,即可得到结论; 线 封 密 内 号学级年名姓 线 封 密 外 (2)根据(1)得到SBDE=SADF,推出S四边形AEDF=SADF+SADE=SABD=SABC,根据公式计算即可得到答案.【详解】解:(1)EDF为等腰直角三角形,理由如下:连接AD,AB=AC,BAC=90,点D是BC中点,AD=BD=CD=BC,AD平分BAC,B=C=BAD=CAD=45,点E、F速度都是1个单位秒,时间是t秒,BE=AF,又B=DAF=45,AD=BD,BDEADF(SAS),DE=DF,BDE=ADFBDE+ADE=90,ADF+ADE=90,EDF=90,ED
20、F为等腰直角三角形;(2)四边形AEDF面积不变,理由:由(1)可知,BDEADF,SBDE=SADF,S四边形AEDF=SADF+SADE=SABD=SABC,S四边形AEDF=ACAB=9.【考点】此题考查等腰直角三角形的性质,等腰三角形三线合一的性质,全等三角形的判定及性质.3、(1)13.5;(2)5.4;【解析】【分析】(1)根据三角形的面积等于底乘以高除以2列式计算即可得解;(2)根据ABC的面积列式计算即可得解【详解】(1)CE=4.5,AB=6,ABC的面积=4.56=13.5;(2)ABC的面积=BCAD=13.5,即BC5=13.5,解得BC=5.4.【考点】此题考查三角形
21、的面积,三角形的角平分线、中线和高,解题关键在于掌握计算公式.4、证明见解析 线 封 密 内 号学级年名姓 线 封 密 外 【解析】【分析】在BC上截取点E,并使得BE=BA,连接DE,证明ABDEBD,得到DEB=BAD=108,进一步计算出DEC=CDE=72得到CD=CE即可证明【详解】证明:在线段BC上截取BE=BA,连接DE,如下图所示:BD平分ABC,ABD=EBD, 在ABD和EBD中: ,ABDEBD(SAS),DEB=BAD=108,DEC=180-108=72,又AB=AC,C=ABC=(180-108)2=36,CDE=180-C-DEC=180-36-72=72,DEC
22、=CDE,CD=CE,BC=BE+CE=AB+CD【考点】本题考查了角平分线的定义,三角形内角和定理,全等三角形的判定与性质,等腰三角形性质等,本题的关键是能在BC上截取BE,并使得BE=BA,这是角平分线辅助线和全等三角形的应用的一种常见作法5、详见解析【解析】【分析】(1)由角平分线定义可证BCEDCF(HL);(2)先证RtFACRtEAC,得AF=AE,由(1)可得AB+AD=(AE+BE)+(AFDF)=AE+BE+AEDF=2AE.【详解】(1)证明:AC是角平分线,CEAB于E,CFAD于F,CE=CF,F=CEB=90,在RtBCE和RtDCF中,BCEDCF;(2)解:CEAB于E,CFAD于F,F=CEA=90,在RtFAC和RtEAC中,RtFACRtEAC,AF=AE,BCEDCF,BE=DF,AB+AD=(AE+BE)+(AFDF)=AE+BE+AEDF=2AE.【考点】本题考查了全等三角形的判定、性质和角平分线定义,注意:全等三角形的对应角相等,对应边相 线 封 密 内 号学级年名姓 线 封 密 外 等,直角三角形全等的判定定理有SAS,ASA,AAS,SSS,HL