1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版数学八年级上册期中专项测评试题 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、如图,1、2、3中是ABC外角的是()A1、2B2、3C1、3D1
2、、2、32、下列说法:若,则为的中点若,则是的平分线,则若,则,其中正确的有()A1个B2个C3个D4个3、如图,在中,D是上一点,于点E,连接,若,则等于()ABCD4、如图,在ABC中,DE是AC的垂直平分线,且分别交BC,AC于点D和E,B60,C25,则BAD为()A50B70C75D805、等腰三角形有两条边长为5cm和9cm,则该三角形的周长是A19cmB23cmC19cm或23cmD18cm二、多选题(5小题,每小题4分,共计20分)1、如图,等腰三角形ABC中,AB=AC,D、E都在BC上,要使ABDACE,添加一个条件可行的是()AAD=AEBBD=CECBE=CDDBAD=
3、CAE2、下列说法正确的是()A相等的角是对顶角B一个四边形的四个内角中最多可以有三个锐角C两条直线被第三条直线所截,内错角相等D两直线相交形成的四个角相等,则这两条直线互相垂直3、一幅美丽的图案,在其顶点处由四个正多边形镶嵌而成,其中三个分别为正三角形、正四边形、 线 封 密 内 号学级年名姓 线 封 密 外 正六边形,则另一个不能为()A正六边形B正五边形C正四边形D正三角形4、下列说法中,正确的是( )A用同一张底片冲出来的10张五寸照片是全等形;B我国国旗上的四颗小五角星是全等形;C所有的正六边形是全等形D面积相等的两个直角三角形是全等形5、如图,BE=CF,AB=DE,添加下列哪些条
4、件不能推证ABCDEF( )ABC=EFBC=FCABDEDA=D第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、已知a,b,c是ABC的三边长,满足,c为奇数,则ABC的周长为_2、如图,在四边形中,于,则的长为_3、如图,若ABCA1B1C1,且A110,B40,则C1_4、如图,已知在ABD和ABC中,DABCAB,点A、B、E在同一条直线上,若使ABDABC,则还需添加的一个条件是_(只填一个即可)5、我们定义:一个三角形最小内角的角平分线将这个三角形分割得到的两个三角形它们的面积之比称为“最小角割比”(),那么三边长分别为7,24,25的三角形的最小角割比是_
5、四、解答题(5小题,每小题8分,共计40分)1、如图,小明和小华两家位于A,B两处,隔河相望要测得两家之间的距离,小明设计如下方案:从点B出发沿河岸画一条射线BF,在BF上截取,过点D作,取点E使E,C,A在同一条直线上,则DE的长就是A,B之间的距离,说明他设计的道理2、如图,是边长为1的等边三角形,点,分别在,上,且,求的周长 线 封 密 内 号学级年名姓 线 封 密 外 3、如图,在ABC中,BAC90,ABAC,直线m经过点A,BD直线m,CE直线m,垂足分别为D,E(1)求证:ABDACE;(2)若BD2cm,CE4cm,求DE的长4、如图,在中,D是边上的点,垂足分别为E,F,且求
6、证:5、如图,点E在CD上,BC与AE交于点F,AB=CB,BE=BD,1=2(1)求证:;(2)证明:1=3-参考答案-一、单选题1、C【解析】【分析】根据三角形外角的定义进行分析即可得到答案.【详解】解:属于ABC外角的有1、3共2个故选C【考点】本题考查三角形外角的定义,解题的关键是掌握三角形的定义.2、A【解析】【分析】根据直线中点、角平分线、有理数大小比较以及绝对值的性质,逐一判定即可.【详解】当三点不在同一直线上的时候,点C不是AB的中点,故错误;当OC位于AOB的内部时候,此结论成立,故错误; 线 封 密 内 号学级年名姓 线 封 密 外 当为负数时,故错误;若,则,故正确;故选
7、:A.【考点】此题主要考查直线中点、角平分线、有理数大小比较以及绝对值的性质,熟练掌握,即可解题.3、C【解析】【分析】证明RtBCDRtBED(HL),由全等三角形的性质得出CD=DE,则可得出答案【详解】解:,在和中,cm,cm故选:C【考点】本题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定方法是解题的关键4、B【解析】【分析】根据线段垂直平分线的性质得到DA=DC,根据等腰三角形的性质得到DAC=C,根据三角形内角和定理求出BAC,计算即可【详解】DE是AC的垂直平分线,DA=DC,DAC=C=25,B=60,C=25,BAC=95,BAD=BAC-DAC=70,故选B【考点】
8、本题考查的是线段垂直平分线的性质、等腰三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键5、C【解析】【分析】根据周长的计算公式计算即可.(三角形的周长等于三边之和.)【详解】根据三角形的周长公式可得:C=5+5+9=19或C=9+9+5=23. 线 封 密 内 号学级年名姓 线 封 密 外 【考点】本题主要考查等腰三角形的性质,关键在于本题没有说明那个长是等腰三角形的腰,因此要分类讨论.二、多选题1、ABCD【解析】【分析】根据全等三角形的判定定理SAS,ASA,AAS,SSS,对每一个选项进行判断即可【详解】解:在ABC中,ABAC,BC,当ADAE时,ADEA
9、ED,ADEBBAD,AEDCCAE,BADCAE,然后根据SAS或ASA或AAS可判定ABDACE;当BDCE时,根据SAS可判定ABDACE;当BECD时,BEDECDDE,即BDCE,根据SAS可判定ABDACE;当BADCAE时,根据ASA可判定ABDACE综上所述ABCD均可判定ABDACE故选:ABCD【考点】本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,题目比较好,难度适中2、BD【解析】【分析】根据对顶角的概念、四边形的性质、平行线的性质以及垂直的概念进行判断【详解】解:A.相等的角不一定是对顶角,而对顶角必定相等,故选项说法错误
10、,不符合题意;B. 一个四边形的四个内角中最多可以有三个锐角,若有四个内角为锐角,则内角和小于360,故选项说法正确,符合题意;C.两条平行直线被第三条直线所截,内错角相等,故选项说法错误,不符合题意;D.两直线相交形成的四个角相等,则这四个角都是90,即这两条直线互相垂直,故选项说法正确,符合题意;故选:BD【考点】本题主要考查了对顶角的概念、四边形的性质、平行线的性质以及垂直的概念,解题时注意:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线一个四边形的四个内角中最多可以有三个锐角,若有四个内角为锐角,则内角和小于3603、ABD【解
11、析】【分析】 线 封 密 内 号学级年名姓 线 封 密 外 平面镶嵌要求多边形在同一个顶点处的所有角的和为 根据平面镶嵌的要求逐一求解各选项涉及的多边形在一个顶点处的所有的角之和,从而可得答案.【详解】解: 一幅美丽的图案,在其顶点处由四个正多边形镶嵌而成,其中三个分别为正三角形、正四边形、正六边形, 在顶点处的四个角的和为: 而正三角形、正四边形、正六边形的每一个内角依次为: 当第四个多边形为正六边形时, 故符合题意;当第四个多边形为正五边形时, 故符合题意;当第四个多边形为正四边形时, 故不符合题意;当第四个多边形为正三角形时, 故符合题意;故选:【考点】本题考查的是平面镶嵌,熟悉平面镶嵌
12、时,围绕在一个顶点处的所有的角组成一个周角是解题的关键.4、AB【解析】【分析】根据能互相重合的两个图形叫做全等图形对各小题分析判断即可得解【详解】解:A、用同一张底片冲出来的10张五寸照片是全等形,正确;B、我国国旗上的四颗小五角星是全等形,正确;C、所有的正六边形是全等形,错误,正六边形的边长不一定相等;D、面积相等的两个直角三角形是全等形,错误故选:AB【考点】本题考查了全等图形,熟记概念是解题的关键,多边形要注意从角和边两个方面考虑5、ABD【解析】【分析】根据题目中的条件,可以得到BC=EF,AB=DE,然后即可判断各个选项中添加的条件是否能使得ABCDEF,从而可以解答本题【详解】
13、解:BE=CF,BE+EC=CF+EC,BC=EF,又AB=DE,添加条件BC=EF,根据SS不能判断ABCDEF,故选项A符合题意;添加条件C=F,根据SSA不能判断ABCDEF,故选项B符合题意;添加条件ABDE,可以得到B=DEF,根据(SAS)可判断ABCDEF,故选项C不符合题意;添加条件A=D,根据SSA不能判断ABCDEF,故选项D符合题意;故选:ABD【考点】本题主要考查了全等三角形的判定,掌握全等三角形的判定方法是解题的关键,即SSS、SAS、ASA、 线 封 密 内 号学级年名姓 线 封 密 外 AAS和HL三、填空题1、16【解析】【分析】根据非负数的性质列式求出a、b的
14、值,再根据三角形的任意两边之和大于第三边,两边之差小于第三边求出c的取值范围,再根据c是奇数求出c的值【详解】解:a,b满足,解得a=7,b=2,5c9,又c为奇数,c=7,ABC的周长为:故答案为:16【考点】本题考查了绝对值、平方的非负性,三角形的三边关系等知识点解题的关键是确定边长c的取值范围2、【解析】【分析】过点B作 交DC的延长线交于点F,证明 推出,可得,由此即可解决问题;【详解】解:过点B作交DC的延长线交于点F,如右图所示, , , ,即,故答案为 线 封 密 内 号学级年名姓 线 封 密 外 【考点】本题考查全等三角形的判定和性质,解题的关键是学会添加常用辅助线,构造全等三
15、角形解决问题,属于中考常考题型3、30【解析】【分析】本题实际上是全等三角形的性质以及根据三角形内角和等于180来求角的度数【详解】ABCA1B1C1,C1=C,又C=180-A-B=180-110-40=30,C1=C=30故答案为30【考点】本题考查了全等三角形的性质;解答时,除必备的知识外,还应将条件和所求联系起来,即将所求的角与已知角通过全等及三角形内角之间的关系联系起来4、ADAC(DC或ABDABC等)【解析】【分析】利用全等三角形的判定方法添加条件即可求解【详解】解:DABCAB,ABAB,当添加ADAC时,可根据“SAS”判断ABDABC;当添加DC时,可根据“AAS”判断AB
16、DABC;当添加ABDABC时,可根据“ASA”判断ABDABC故答案为ADAC(DC或ABDABC等)【考点】本题考查了全等三角形的判定:熟练掌握全等三角形的5种判定方法,选用哪一种方法,取决于题目中的已知条件5、【解析】【分析】根据题意作出图形,然后根据角平分线的性质得到,再根据三角形的面积和最小角割比的定义计算即可【详解】解:如图示,则,根据题意,作的角平分线交于点,过点,作交于点,过点,作交于点, 线 封 密 内 号学级年名姓 线 封 密 外 则,则()故答案是:【考点】本题考查了三角形角平分线的性质和三角形的面积计算,熟悉相关性质是解题的关键四、解答题1、见解析【解析】【分析】根据两
17、直线平行,内错角相等可得,然后利用“角角边”证明和全等,根据全等三角形对应边相等解答;【详解】解:,在和中,即的长就是、两点之间的距离【考点】本题考查了全等三角形的应用,熟练掌握三角形全等的判定方法是解题的关键2、2【解析】【分析】延长至点,使,连接,证明推出,进而得到,从而证明,推出EF=CP,由此求出的周长=AB+AC得到答案.【详解】解:如图,延长至点,使,连接是等边三角形, 线 封 密 内 号学级年名姓 线 封 密 外 在和中,在和中,的周长.【考点】此题考查全等三角形的判定及性质,等边三角形的性质,等腰三角形等边对等角的性质,题中辅助线的引出是解题的关键.3、(1)见解析;(2)DE
18、6cm【解析】【分析】(1)根据BD直线m,CE直线m,得BDA=CEA=90,而BAC=90,根据等角的余角相等得CAE=ABD,然后根据“AAS”可判断ADBCEA;(2)根据全等三角形的性质得出AE=BD,AD=CE,于是DE=AE+AD=BD+CE【详解】解:(1)BD直线m,CE直线m,BDACEA90,BAC90,BAD+CAE90,BAD+ABD90,CAEABD,在ABD和CAE中,ABDCAE(AAS),(2)ABDCAE,AEBD,ADCE,DEAE+ADBD+CE,BD2cm,CE4cm, 线 封 密 内 号学级年名姓 线 封 密 外 DE6cm;【考点】本题考查了全等三
19、角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;得出CAE=ABD是解题关键4、见解析【解析】【分析】由得出,由SAS证明,得出对应角相等即可【详解】证明:,在和中,【考点】本小题考查垂线的性质、全等三角形的判定与性质、等基础知识,考查推理能力、空间观念与几何直观5、(1)证明见解析;(2)证明见解析【解析】【分析】(1)先根据角的和差可得,再根据三角形全等的判定定理即可得证;(2)先根据三角形全等的性质可得,再根据对顶角相等可得,然后根据三角形的内角和定理、等量代换即可得证【详解】(1),即,在和中,;(2)由(1)已证:,由对顶角相等得:,又,【考点】本题考查了三角形全等的判定定理与性质、对顶角相等、三角形的内角和定理等知识点,熟练掌握三角形全等的判定定理与性质是解题关键