收藏 分享(赏)

2022-2023学年期末强化人教版九年级数学上册期末测评试题 卷(Ⅲ)(含答案详解).docx

上传人:a**** 文档编号:646298 上传时间:2025-12-12 格式:DOCX 页数:26 大小:694.40KB
下载 相关 举报
2022-2023学年期末强化人教版九年级数学上册期末测评试题 卷(Ⅲ)(含答案详解).docx_第1页
第1页 / 共26页
2022-2023学年期末强化人教版九年级数学上册期末测评试题 卷(Ⅲ)(含答案详解).docx_第2页
第2页 / 共26页
2022-2023学年期末强化人教版九年级数学上册期末测评试题 卷(Ⅲ)(含答案详解).docx_第3页
第3页 / 共26页
2022-2023学年期末强化人教版九年级数学上册期末测评试题 卷(Ⅲ)(含答案详解).docx_第4页
第4页 / 共26页
2022-2023学年期末强化人教版九年级数学上册期末测评试题 卷(Ⅲ)(含答案详解).docx_第5页
第5页 / 共26页
2022-2023学年期末强化人教版九年级数学上册期末测评试题 卷(Ⅲ)(含答案详解).docx_第6页
第6页 / 共26页
2022-2023学年期末强化人教版九年级数学上册期末测评试题 卷(Ⅲ)(含答案详解).docx_第7页
第7页 / 共26页
2022-2023学年期末强化人教版九年级数学上册期末测评试题 卷(Ⅲ)(含答案详解).docx_第8页
第8页 / 共26页
2022-2023学年期末强化人教版九年级数学上册期末测评试题 卷(Ⅲ)(含答案详解).docx_第9页
第9页 / 共26页
2022-2023学年期末强化人教版九年级数学上册期末测评试题 卷(Ⅲ)(含答案详解).docx_第10页
第10页 / 共26页
2022-2023学年期末强化人教版九年级数学上册期末测评试题 卷(Ⅲ)(含答案详解).docx_第11页
第11页 / 共26页
2022-2023学年期末强化人教版九年级数学上册期末测评试题 卷(Ⅲ)(含答案详解).docx_第12页
第12页 / 共26页
2022-2023学年期末强化人教版九年级数学上册期末测评试题 卷(Ⅲ)(含答案详解).docx_第13页
第13页 / 共26页
2022-2023学年期末强化人教版九年级数学上册期末测评试题 卷(Ⅲ)(含答案详解).docx_第14页
第14页 / 共26页
2022-2023学年期末强化人教版九年级数学上册期末测评试题 卷(Ⅲ)(含答案详解).docx_第15页
第15页 / 共26页
2022-2023学年期末强化人教版九年级数学上册期末测评试题 卷(Ⅲ)(含答案详解).docx_第16页
第16页 / 共26页
2022-2023学年期末强化人教版九年级数学上册期末测评试题 卷(Ⅲ)(含答案详解).docx_第17页
第17页 / 共26页
2022-2023学年期末强化人教版九年级数学上册期末测评试题 卷(Ⅲ)(含答案详解).docx_第18页
第18页 / 共26页
2022-2023学年期末强化人教版九年级数学上册期末测评试题 卷(Ⅲ)(含答案详解).docx_第19页
第19页 / 共26页
2022-2023学年期末强化人教版九年级数学上册期末测评试题 卷(Ⅲ)(含答案详解).docx_第20页
第20页 / 共26页
2022-2023学年期末强化人教版九年级数学上册期末测评试题 卷(Ⅲ)(含答案详解).docx_第21页
第21页 / 共26页
2022-2023学年期末强化人教版九年级数学上册期末测评试题 卷(Ⅲ)(含答案详解).docx_第22页
第22页 / 共26页
2022-2023学年期末强化人教版九年级数学上册期末测评试题 卷(Ⅲ)(含答案详解).docx_第23页
第23页 / 共26页
2022-2023学年期末强化人教版九年级数学上册期末测评试题 卷(Ⅲ)(含答案详解).docx_第24页
第24页 / 共26页
2022-2023学年期末强化人教版九年级数学上册期末测评试题 卷(Ⅲ)(含答案详解).docx_第25页
第25页 / 共26页
2022-2023学年期末强化人教版九年级数学上册期末测评试题 卷(Ⅲ)(含答案详解).docx_第26页
第26页 / 共26页
亲,该文档总共26页,全部预览完了,如果喜欢就下载吧!
资源描述

1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版九年级数学上册期末测评试题 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、函数yax与yax2+a(a0)在同一直角坐标系中的大致图象可能是()

2、ABCD2、三孔桥横截面的三个孔都呈抛物线形,两小孔形状、大小完全相同当水面刚好淹没小孔时,大孔水面宽度为10米,孔顶离水面1.5米;当水位下降,大孔水面宽度为14米时,单个小孔的水面宽度为4米,若大孔水面宽度为20米,则单个小孔的水面宽度为()A4米B5米C2米D7米3、定义新运算,对于任意实数a,b满足,其中等式右边是通常的加法、减法、乘法运算,例如,若(k为实数) 是关于x的方程,则它的根的情况是()A有一个实根B有两个不相等的实数根C有两个相等的实数根D没有实数根4、如图,点A、B、C在O上,且ACB=100o,则度数为()A160oB120oC100oD80o5、如图,矩形ABCD中

3、,AD=2,AB=,对角线AC上有一点G(异于A,C),连接 DG,将AGD绕点A 逆时针旋转60得到AEF,则BF的长为()AB2CD2二、多选题(5小题,每小题4分,共计20分)1、一个两位数,十位数字与个位数字之和是5,把这个数的个位数字与十位数字对调后,所得的新的两位数与原来的两位数的乘积是736,原来的两位数是()A23B32CD 线 封 密 内 号学级年名姓 线 封 密 外 2、已知抛物线上部分点的横坐标x与纵坐标y的对应值如表所示,对于下列结论:x-10123y30-1m3抛物线开口向下;抛物线的对称轴为直线;方程的两根为0和2;当时,x的取值范围是或正确的是()ABCD3、观察

4、如图推理过程,错误的是()A因为的度数为,所以B因为,所以C因为垂直平分,所以D因为,所以4、如图是二次函数图象的一部分,过点,对称轴为直线则错误的有()ABCD5、如图,二次函败y=ax2+bx+c(a、b、c为常数,且a0)的图象与x轴的交点的横坐标分别为1、3,则下列结论中正确的有()Aabc0B2a+b=0C3a+2c0D对于任意x均有ax2a+bxb0第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、一个圆锥的底面半径r6,高h8,则这个圆锥的侧面积是_2、如图,有长为24米的篱笆,一面利用墙(墙的最大可用长度为10米),围成中间隔有一道篱笆的长方形花圃设花圃的

5、宽AB为x米,面积为S平方米则S与x的函数关系式是_,自变量x的取值范围是_3、已知二次函数,当分别取时,函数值相等,则当取时,函数值为_4、写出一个满足“当时,随增大而减小”的二次函数解析式_5、袋中有五颗球,除颜色外全部相同,其中红色球三颗,标号分别为1,2,3,绿色球两颗,标号 线 封 密 内 号学级年名姓 线 封 密 外 分别为1,2,若从五颗球中任取两颗,则两颗球的标号之和不小于4的概率为_四、解答题(5小题,每小题8分,共计40分)1、在中,将绕点C顺时针旋转一定的角度得到,点A、B的对应点分别是D、E(1)当点E恰好在AC上时,如图1,求的大小;(2)若时,点F是边AC中点,如图

6、2,求证:四边形BEDF是平行四边形(请用两组对边分别相等的四边形是平行四边形)2、已知x1,x2是关于x的一元二次方程x2-4mx+4m2-90的两实数根(1)若这个方程有一个根为-1,求m的值;(2)若这个方程的一个根大于-1,另一个根小于-1,求m的取值范围;(3)已知RtABC的一边长为7,x1,x2恰好是此三角形的另外两边的边长,求m的值3、冰墩墩是2022年北京冬季奥运会的吉祥物冰墩墩以熊猫为原型设计,寓意创造非凡、探索未来某超市用2400元购进一批冰墩墩玩偶出售若进价降低20%,则可以多买50个市场调查发现:当每个冰墩墩玩偶的售价是20元时,每周可以销售200个;每涨价1元,每周

7、少销售10个(1)求每个冰墩墩玩偶的进价;(2)设每个冰墩墩玩偶的售价是x元(x是大于20的正整数),每周总利润是w元求w关于x的函数解析式,并求每周总利润的最大值;当每周总利润不低于1870元时,求每个冰墩墩玩偶售价x的范围4、小明和小丽先后从A地出发同一直道去B地, 设小丽出发第时, 小丽、小明离B地的距离分别为、,与x之间的数表达式,与x之间的函数表达式是(1)小丽出发时,小明离A地的距离为 (2)小丽发至小明到达B地这段时间内,两人何时相距最近?最近距离是多少?5、某超市经销一种商品,每件成本为50元经市场调研,当该商品每件的销售价为60元时,每个月可销售300件,若每件的销售价每增加

8、1元,则每个月的销售量将减少10件设该商品每件的销售价为x元,每个月的销售量为y件(1)求y与x的函数表达式;(2)当该商品每件的销售价为多少元时,每个月的销售利润最大?最大利润是多少?-参考答案-一、单选题1、D【解析】【分析】先根据一次函数的性质确定a0与a0两种情况分类讨论抛物线的顶点位置即可得出结论【详解】解:函数yax与yax2+a(a0)A. 函数yax图形可得a0,则yax2+a(a0)开口方向向下正确,当顶点坐标为(0,a),应交于y轴负半轴,而不是交y轴正半轴,故选项A不正确;B. 函数yax图形可得a0,则yax2+a(a0)开口方向向下正确,当顶点坐标为(0,a),应交于

9、y轴负半轴,而不是在坐标原点上,故选项B不正确;C. 函数yax图形可得a0,则yax2+a(a0)开口方向向上正确,当顶点坐标为(0,a),应交于y轴正半轴,故选项C不正确; 线 封 密 内 号学级年名姓 线 封 密 外 D. 函数yax图形可得a0,则yax2+a(a0)开口方向向上正确,当顶点坐标为(0,a),应交于y轴正半轴正确,故选项D正确;故选D【考点】本题考查的知识点是一次函数的图象与二次函数的图象,理解掌握函数图象的性质是解此题的关键2、B【解析】【分析】根据题意,可以画出相应的抛物线,然后即可得到大孔所在抛物线解析式,再求出顶点为A的小孔所在抛物线的解析式,将x=10代入可求

10、解【详解】解:如图,建立如图所示的平面直角坐标系,由题意可得MN=4,EF=14,BC=10,DO=,设大孔所在抛物线解析式为y=ax2+,BC=10,点B(5,0),0=a(5)2+,a=-,大孔所在抛物线解析式为y=-x2+,设点A(b,0),则设顶点为A的小孔所在抛物线的解析式为y=m(xb)2,EF=14,点E的横坐标为-7,点E坐标为(-7,-),-=m(xb)2,x1=+b,x2=-+b,MN=4,|+b-(-+b)|=4m=-,顶点为A的小孔所在抛物线的解析式为y=-(xb)2,大孔水面宽度为20米,当x=-10时,y=-,-=-(xb)2,x1=+b,x2=-+b,单个小孔的水

11、面宽度=|(+b)-(-+b)|=5(米),故选:B 线 封 密 内 号学级年名姓 线 封 密 外 【考点】本题考查二次函数的应用,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答3、B【解析】【分析】将按照题中的新运算方法展开,可得,所以可得,化简得:,可得,即可得出答案.【详解】解:根据新运算法则可得:,则即为,整理得:,则,可得:,;,方程有两个不相等的实数根;故答案选:B.【考点】本题考查新定义运算以及一元二次方程根的判别式.注意观察题干中新定义运算的计算方法,不能出错;在求一元二次方程根的判别式时,含有参数的一元二次方程要尤其注意各项系数的符号.4、A【解析】【分析】

12、在O取点,连接 利用圆的内接四边形的性质与一条弧所对的圆心角是它所对的圆周角的2倍,可得答案【详解】解:如图,在O取点,连接 四边形为O的内接四边形, 故选A【考点】本题考查的是圆的内接四边形的性质,同弧所对的圆心角是它所对的圆周角的2倍,掌握相关知识点是解题的关键5、A【解析】【分析】过点F作FHBA交BA的延长线于点H,则FHA=90,AGD绕点A 逆时针旋转60得到AEF, 线 封 密 内 号学级年名姓 线 封 密 外 得FAD=60,AF=AD=2,又由四边形ABCD是矩形,BAD=90,得到FAH=30,在RtAFH中,FH=AF=1,由勾股定理得AH= ,得到BH=AH+AB=2

13、,再由勾股定理得BF=【详解】解:如图,过点F作FHBA交BA的延长线于点H,则FHA=90,AGD绕点A 逆时针旋转60得到AEFFAD=60,AF=AD=2, 四边形ABCD是矩形 BAD=90BAF=FAD+ BAD=150FAH=180BAF=30在RtAFH中,FH=AF=1由勾股定理得AH= 在RtBFH中,FH=1,BH=AH+AB=2 由勾股定理得BF= 故BF的长故选:A【考点】本题考查了图形的旋转,矩形的性质,含30度角的直角三角形的性质,勾股定理等知识,解决此题的关键在于作出正确的辅助线二、多选题1、AB【解析】【分析】设原来的两位数十位上的数字为,则个位上的数字为,根据

14、所得到的新两位数与原来的两位数的乘积为736,可列出方程求解即可【详解】解:设原来的两位数十位上的数字为,则个位上的数字为,依题意可得:,解得:,当时,符合题意,原来的两位数是23,当时,符合题意,原来的两位数是32,原来的两位数是23或32,故选AB【考点】本题考查了一元二次方程的应用,解题的关键是能正确用每一数位上的数字表示这个两位数2、CD【解析】 线 封 密 内 号学级年名姓 线 封 密 外 【分析】根据表格可知直线x1是抛物线对称轴,此时有最小值,与x轴交点坐标为(0,0)(2,0)据此可判断,根据与x轴交点坐标结合开口方向可判断【详解】解:从表格可以看出,函数的对称轴是直线x1,顶

15、点坐标为(1,1),此时有最小值函数与x轴的交点为(0,0)、(2,0),抛物线yax2+bx+c的开口向上故错误;抛物线yax2+bx+c的对称轴为直线x1故错误;方程ax2+bx+c0的根为0和2故正确;当y0时,x的取值范围是x0或x2故正确;故选CD【考点】本题考查了二次函数的图象和性质解题的关键在于根据表格获取正确的信息3、ABC【解析】【分析】A.根据定理“圆心角的度数等于它所对的弧的度数。”可得.B.根据定理“同圆或等圆中,相等的圆心角所对的弧相等。”可得.C.根据“垂径定理”及弦的定义可得.D.根据“在同圆或等圆中,若两个圆心角、两条弧、两条弦、两条弦的弦心距中得到的四组量中有

16、一组量相等,则对应的其余各组量也相等。”可得.【详解】由定理“圆心角的度数等于它所对的弧的度数。”A. 的度数是 ,故选项A错误.B.由定理“同圆中相等的圆心角所对的弧相等。”,B选项题干中不是同一个圆,故选项B错误.C.由“垂径定理:垂直于弦(非直径)的直径平分这条弦,并且平分弦所对的两条弧。 没有过圆心,不是直径,并且,根据弦的定义,不是圆O的弦,因此无法判断 ,故选项C错误.D. 即 由定理“在同圆或等圆中,若两个圆心角、两条弧、两条弦、两条弦的弦心距中有一组量相等,则对应的其余各组量也相等。”所以,故选项D正确.【考点】本题旨在考查圆,圆心角,所对应的圆弧及弦的相关定义及性质定理,熟练

17、掌握圆的相关定理是解题的关键.4、BD【解析】【分析】由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴x=1可得2a+b的符号;再由根的判别式可得,根据二次函数的对称性进而对所得结论进行判断【详解】 线 封 密 内 号学级年名姓 线 封 密 外 解:A、由抛物线的开口向下知a0,对称轴为直线,得2a=b,a、b同号,即b0;故本选项正确,不符合题意;B、对称轴为,得2a=b,2a+b=4a,且a0,2a+b0;故本选项错误,符合题意;C、从图象知,该函数与x轴有两个不同的交点,所以根的判别式,即;故本选项正确,不符合题意;D、3x12,根据二次函数图象的对称性,

18、知当x=1时,y0;又由A知,2a=b,a+b+c0;b+b+c0,即3b+2c0;故本选项错误,符合题意故选:BD【考点】本题主要考查了二次函数图象与系数之间的关系,熟练运用对称轴的范围求2a与b的关系,二次函数与方程及不等式之间的关系是解决本题的关键5、BD【解析】【分析】由抛物线开口方向得到a0,利用抛物线与x轴的交点问题和抛物线的对称性得到抛物线的对称轴为直线x=1,即-=1,所以b=-2a0,利用抛物线与y轴的交点位置得到c0,则可对A进行判断;利用b=-2a可对B进行判断;由于x=-1时,y=0,所以a-b+c=0,则c=-3a,3a+2c=-3a0,于是可对C进行判断;根据二次函

19、数性质,x=1时,y的值最小,所以a+b+cax2+bx+c,于是可对D进行判断【详解】解:抛物线开口向上,a0,抛物线与x轴的交点的坐标分别为(-1,0),(3,0),抛物线的对称轴为直线x=1,即-=1,b=-2a0,抛物线与y轴的交点在x轴下方,c0,abc0,所以A错误;b=-2a,2a+b=0,所以B正确;x=-1时,y=0,a-b+c=0,即a+2a+c=0, 线 封 密 内 号学级年名姓 线 封 密 外 c=-3a,3a+2c=3a-6a=-3a0,所以C错误;x=1时,y的值最小,对于任意x,a+b+cax2+bx+c,即ax2-a+bx-b0,所以D正确故选:BD【考点】本题

20、考查了二次函数与不等式(组):函数值y与某个数值m之间的不等关系,一般要转化成关于x的不等式,解不等式求得自变量x的取值范围;利用两个函数图象在直角坐标系中的上下位置关系求自变量的取值范围,可作图利用交点直观求解,也可把两个函数解析式列成不等式求解三、填空题1、60【解析】【分析】利用圆锥的侧面积公式:,求出圆锥的母线即可解决问题【详解】解:圆锥的母线,圆锥的侧面积=106=60,故答案为:60【考点】本题考查了圆锥的侧面积,勾股定理等知识,解题的关键是记住圆锥的侧面积公式2、 S3x224x x8【解析】【详解】可先用篱笆的长表示出BC的长,然后根据矩形的面积=长宽,得出S与x的函数关系式,

21、并根据墙的最大可用长度为10米,列不等式组即可得出自变量的取值范围解:由题可知,花圃的宽AB为x米,则BC为(243x)米.S=x(243x)=3x2+24x.0243x10,解得x8,故答案为S3x224x,x8.3、2020【解析】【分析】根据二次函数y=2x2+2020,当x分别取x1,x2(x1x2)时,函数值相等,可以得到x1和x2的关系,从而可以得到2x1+2x2的值,进而可以求得当x取2x1+2x2时,函数的值【详解】解:二次函数y=2x2+2020,当x分别取x1,x2(x1x2)时,函数值相等,2x12+2020=2x22+2020,x1=-x2,2x1+2x2=2(x1+x

22、2)=0,当x=2x1+2x2时,y=20+2020=0+2020=2020,故答案为:2020 线 封 密 内 号学级年名姓 线 封 密 外 【考点】本题考查二次函数的性质、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答4、(答案不唯一)【解析】【分析】先根据二次函数的图象和性质取对称轴x=2,设抛物线的解析式为y=a(x-2)2,由于在抛物线对称轴的右边, y 随 x 增大而减小,得出a0,于是去a=-1,即可解答【详解】解:设抛物线的解析式为y=a(x-2)2,在抛物线对称轴的右边, y 随 x 增大而减小,a0,符合上述条件的二次函数均可,可取a=-1,则

23、y=-(x-2)2 故答案为:y=-(x-2)2【考点】本题考查了二次函数的图象和性质,解题的关键是掌握二次函数的图象和性质5、#0.5【解析】【分析】画树状图,共有20个等可能的结果,两颗球的标号之和不小于4的结果有10个,再由概率公式求解即可【详解】画树状图如图:共有20个等可能的结果,两颗球的标号之和不小于4的结果有10个,两颗球的标号之和不小于4的概率为,故答案为:【考点】本题考查了列表法与树状图法以及概率公式,正确画出树状图是解题的关键四、解答题1、 (1)(2)见解析【解析】【分析】(1)根据旋转的性质可得CACD,ECDBCA30,DECABC90,根据等边对等角即可求出CADC

24、DA75,再根据直角三角形的两个锐角互余即可得出结论;(2)根据直角三角形斜边上的中线等于斜边的一半可得BFAC,然后根据30所对的直角边是斜边的一半即可求出ABAC,从而得出 BFAB,然后证出ACD和BCE为等边三角形,再利用HL证出CFDABC,证出DFBE,即可证出结论(1) 线 封 密 内 号学级年名姓 线 封 密 外 解:ABC绕点C顺时针旋转得到DEC,点E恰好在AC上,CACD,ECDBCA30,DECABC90,CADCDA(18030)75,ADE90CAD15(2)证明:如图2,连接AD,点F是边AC中点,BFAF=CFAC,ACB30,ABAC,BF=CFAB,ABC绕

25、点C顺时针旋转60得到DEC,BCEACD60,CBCE,DEAB,DC=AC,DEBF,ACD和BCE为等边三角形,BECB,点F为ACD的边AC的中点,DFAC,在RtCFD和RtABC中,RtCFDRtABC,DFBC,DFBE,而BFDE,四边形BEDF是平行四边形【考点】本题主要考查的是旋转的性质、等腰三角形的性质、直角三角形的性质、等边三角形的判定及性质、全等三角形的判定及性质和平行四边形的判定,掌握旋转的性质、等腰三角形的性质、直角三角形的性质、等边三角形的判定及性质、全等三角形的判定及性质和平行四边形的判定是解决此题的关键2、 (1)m的值为1或-2(2)-2m1(3)m或m【

26、解析】【分析】(1)把x=-1代入方程,列出m的一元二次方程,求出m的值;(2)首先用m表示出方程的两根,然后列出m的不等式组,求出m的取值范围;(3)首先用m表示出方程的两根,分直角ABC的斜边长为7或2m+3,根据勾股定理求出m的值.(1)解:x1,x2是一元二次方程x2-4mx+4m2-90的两实数根,这个方程有一个根为-1,将x-1代入方程x2-4mx+4m2-90,得1+4m+4m2-90解得m1或m-2 线 封 密 内 号学级年名姓 线 封 密 外 m的值为1或-2(2)解:x2-4mx+4m29,(x-2m)29,即x-2m3x12m+3,x22m-32m+32m-3,解得-2m

27、1m的取值范围是-2m1(3)解:由(2)可知方程x2-4mx+4m2-90的两根分别为2m+3,2m-3若RtABC的斜边长为7,则有49(2m+3)2+(2m-3)2解得m边长必须是正数,m若斜边为2m+3,则(2m+3)2(2m-3)2+72解得m综上所述,m或m【考点】本题主要考查了根的判别式与根与系数的关系的知识,解答本题的关键是熟练掌握根与系数关系以及根的判别式的知识,此题难度一般.3、 (1)每个冰墩墩钥匙扣的进价为12元(2),最大值为1960元;每个冰墩墩玩偶售价x的范围为:【解析】【分析】(1)设每个冰墩墩钥匙扣的进价为x元,根据题意列出分式方程,进而计算求解即可;(2)根

28、据题意列出一次函数关系,根据一次函数的性质求得最大利润即可;根据题意列出方程,根据二次函数的性质求得的范围,根据题意取整数解即可(1)设每个冰墩墩钥匙扣的进价为x元,由题意得:,解得,经检验,是原方程的解且符合题意,答:每个冰墩墩钥匙扣的进价为12元;(2)且x是大于20的正整数当时,w有最大值,最大值为1960元 线 封 密 内 号学级年名姓 线 封 密 外 售价为24元或25元或26元或27元或28元解析如下:由题意得,解得或29抛物线开口向下,x是大于20的正整数当时,每周总利润不低于1870元,【考点】本题考查了分式方程的应用,二次函数的应用,一次函数的应用,根据题意列出方程或关系式是

29、解题的关键4、(1)250;(2)当小丽出发第时,两人相距最近,最近距离是【解析】【分析】(1)由x=0时,根据-求得结果即可;(2)求出两人相距的函数表达式,求出最小值即可【详解】解(1)当x=0时,=2250,=2000-=2250-2000=250(m)故答案为:250(2)设小丽出发第时,两人相距,则即其中因此,当时S有最小值,也就是说,当小丽出发第时,两人相距最近,最近距离是【考点】此题主要考查了二次函数的性质的应用,熟练掌握二次函数的性质是解答本题的关键5、(1)y-10x+900;(2)每件销售价为70元时,获得最大利润;最大利润为4000元【解析】【分析】(1)根据等量关系“利润(售价进价)销量”列出函数表达式即可(2)根据(1)中列出函数关系式,配方后依据二次函数的性质求得利润最大值【详解】解:(1)根据题意,y30010(x60)=-10x+900,y与x的函数表达式为:y-10x+900;(2)设利润为w,由(1)知:w(x50)(-10x+900)=10x21400x45000,w10(x70)24000,每件销售价为70元时,获得最大利润;最大利润为4000元【考点】本题考查的是二次函数在实际生活中的应用此题难度不大,解题的关键是理解题意,找到等量关系,求得二次函数解析式

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 语文

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1