1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版数学八年级上册期中定向训练试题 B卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、如果一个多边形的内角和是外角和的5倍,那么这个多边形的边数是()A1
2、0B11C12D132、如图,在中,平分,于点的角平分线所在直线与射线相交于点,若,且,则的度数为()ABCD3、如图,点在的延长线上,于点,交于点若,则的度数为()A65B70C75D854、如图,与交于点,则的度数为()ABCD5、下列说法中正确的是()A三角形的三条中线必交于一点B直角三角形只有一条高C三角形的中线可能在三角形的外部D三角形的高线都在三角形的内部二、多选题(5小题,每小题4分,共计20分)1、下列多边形中,外角和为360的有()A三角形B四边形C六边形D十八边形2、如图,已知,在和中,如果AB DE,BC EF.在下列条件中能保证的是()ABDEFBACDFCABDEDA
3、D 线 封 密 内 号学级年名姓 线 封 密 外 3、如图,要添加一个条件使添加的条件可以是()ABCD4、如图,AEDF,AEDF,要使EACFDB,需要添加下列选项中的()AEFBECBFCABCDDABBC5、用下列一种正多边形可以拼地板的是()A正三角形B正六边形C正八边形D正十二边形第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、如图,在中,AE是的角平分线,D是AE延长线上一点,于点H若,则_2、已知三角形的三边长为4、x、11,化简_3、如图,在和中,则_4、在等腰ABC中,AB=AC,AC腰上的中线BD将三角形周长分为15和21两部分,则这个三角形的底边
4、长为_5、如图,D,E,F分别是的边,上的中点,连接,交于点G,的面积为6,设的面积为,的面积为,则=_ 线 封 密 内 号学级年名姓 线 封 密 外 四、解答题(5小题,每小题8分,共计40分)1、已知:如图,求证:2、已知:在四边形ABCD中,对角线AC、BD相交于点E,且ACBD,作BFCD,垂足为点F,BF与AC交于点C,BGE=ADE(1)如图1,求证:AD=CD;(2)如图2,BH是ABE的中线,若AE=2DE,DE=EG,在不添加任何辅助线的情况下,请直接写出图2中四个三角形,使写出的每个三角形的面积都等于ADE面积的2倍3、如图,已知线段a、b和,用尺规作一个三角形,使(要求:
5、不写已知、求作、作法、只画图,保留作图痕迹)4、已知,在四边形中,分别为四边形的外角,的平分线(1)如图1,若,求的度数;(2)如图2,若,交于点,且,求的度数5、如图,已知,求证:.-参考答案-一、单选题1、C 线 封 密 内 号学级年名姓 线 封 密 外 【解析】【分析】设多边形的边数为n,根据多边形外角和与内角和列式计算即可;【详解】解:设多边形的边数为n,根据题意可得:,化简得:,解得:;故选:C【考点】本题主要考查了多边形的内角和与外角和,结合一元一次方程求解是解题的关键2、C【解析】【分析】由角平分线的定义可以得到,设,假设,通过角的等量代换可得到,代入的值即可【详解】平分,平分,
6、设可以假设,设,则故答案选:C【考点】本题主要考查了角平分线的定义以及角的等量代换,三角形的内角和定理,外角的性质,二元一次方程组的应用,灵活设立未知数代换角是解题的关键3、B【解析】【分析】根据题意于点,交于点,则,即【详解】解:, 线 封 密 内 号学级年名姓 线 封 密 外 故选B【考点】本题考查垂直的性质,解题关键在于在证明4、A【解析】【分析】先根据三角形的内角和定理可求出,再根据平行线的性质即可得【详解】故选:A【考点】本题考查了三角形的内角和定理、平行线的性质,熟记平行线的性质是解题关键5、A【解析】【分析】根据三角形中线及高线的定义逐一判断即可得答案【详解】A.三角形的三条中线
7、必交于一点,故该选项正确,B.直角三角形有三条高,故该选项错误,C.三角形的中线不可能在三角形的外部,故该选项错误,D.三角形的高线不一定都在三角形的内部,故该选项错误,故选:A【考点】本题考查三角形的中线及高线,熟练掌握定义是解题关键二、多选题1、ABCD【解析】【分析】多边形的外角和为360,与边数无关,即可得到答案【详解】解:多边形的外角和为360,故答案为:ABCD【考点】本题考查多边形的外角和,掌握多边形的外角和为360且与边数无关是解题的关键2、ABC【解析】【分析】非直角三角形,已知两组对应边相等,合适的判定条件有SAS,SSS依据三角形全等的判定即可判断【详解】这三个条件可组成
8、SAS判定,故A正确 线 封 密 内 号学级年名姓 线 封 密 外 这三个条件可组成SSS判定,故B正确由ABDE可得BDEF,这三个条件可组成SAS判定,故C正确这三个条件中对应角不是夹角,ASS不构成全等三角形判定条件,故D错误综上,故选ABC【考点】本题主要考查了三角形全等的判定,熟悉三角形全等的判定条件是解决本题的关键3、BD【解析】【分析】已知一边和一角对应相等,再添加任意对对应角相等,或已知角的另一边相等就可以由AAS、ASA或SAS判定两个三角形全等【详解】解:选项A中与不是对应角,不能与已知构成AAS或ASA的判定,无法判定三角形全等,故选项A不合题意;选项B中是对应角,结合已
9、知可以由AAS判定,故选项B符合题意;选项C中是对应边,但不是两边及其夹角相等,无法判定,故选项C不合题意;选项B中由已知可得,是对应角,结合已知可以由ASA判定,故选项D符合题意;故选BD【考点】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:、注意:、不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角4、AC【解析】【分析】由条件可得A=D,结合AE=DF,则还需要一边或一角,再结合选项可求得答案【详解】解:AEDF,A=D,AE=DF,要使EACFDB,还需要AC=BD或E=F或ACE=DBF,当AB=CD时,可得AB+
10、BC=BC+CD,即AC=BD,选项A、C符合, B、D不符合故选:AC【考点】本题主要考查全等三角形的判定,掌握全等三角形的判定方法是解题的关键5、AB【解析】【分析】分别求出各个正多边形的每个内角的度数,结合镶嵌的条件即可求出答案【详解】解:A、 正三边形的一个内角度数为18036,是360的约数,可以拼地板,符合题意; B、正六边形的每个内角是120,能整除360,可以拼地板符合题意; C. 正八边形的一个内角度数为(8-2)1808135,不是360的约数,不可以拼地板,不符合题意;D.正十二边形的一个内角度数为(12-2)18012150,不是360的约数,不可以拼地板, 线 封 密
11、 内 号学级年名姓 线 封 密 外 不符合题意;故选AB【考点】本题考查了平面镶嵌(拼地板),计算正多边形的内角能否整除360是解答此题的关键三、填空题1、10【解析】【分析】在EFD中,由三角形的外角性质知:HED=AEC=B+BAC,所以B+BAC+EDH=90;联立ABC中,由三角形内角和定理得到的式子,即可推出EDH=(C-B)【详解】解:由三角形的外角性质知:HED=AEC=B+BAC,故B+BAC+EDH=90,ABC中,由三角形内角和定理得:B+BAC+C=180,即:C+B+BAC=90,-,得:EDH=(C-B)=(50-30)=10故答案为:10【考点】本题考查三角形内角和
12、定理、三角形的外角性质以及角平分线的定义等知识,解题的关键是证明EFD=(C-B)2、11【解析】【分析】根据三角形三边关系可求出x的取值范围,即可求解【详解】三角形的三边为4、x、11,11-4x11+4,故答案为:11【考点】本题主要考查了构成三角形三边大小的关系和去绝对值的知识,利用三角形三边关系求出x的取值范围是解答本题的关键3、130【解析】【分析】证明ABCADC即可【详解】,AC=AC,ABCADC,D=B=130, 线 封 密 内 号学级年名姓 线 封 密 外 故答案为:130【考点】本题考查了全等三角形的判定和性质,掌握判定定理是解题关键4、16或8【解析】【分析】本题由题意
13、可知有两种情况,AB+AD=15或AB+AD=21从而根据等腰三角形的性质及三角形三边关系可求出底边为8或16【详解】解:BD是等腰ABC的中线,可设AD=CD=x,则AB=AC=2x又知BD将三角形周长分为15和21两部分可知分为两种情况AB+AD=15,即3x=15,解得x=5,此时BC=21x=215=16AB+AD=21,即3x=21,解得x=7;此时等腰ABC的三边分别为14,14,8经验证,这两种情况都是成立的这个三角形的底边长为8或16故答案为:16或8【考点】本题主要考查来了等边三角形的性质以及三角形的三边关系(两边之和大于第三边,两边只差小于第三边),注意求出的结果燕验证三角
14、形的三边关系,掌握分类讨论思想是解题的关键5、【解析】【分析】根据同高三角形的面积比就是相应底的比进行推导即可求得答案【详解】解:是的中点, 线 封 密 内 号学级年名姓 线 封 密 外 、分别是、的中点,设的面积为,的面积为故答案是:【考点】本题考查了与三角形中线有关的三角形面积问题,涉及到了三角形中线的性质、三角形的面积公式、同高三角形面积之比等于相应底的比等,难度不大四、解答题1、见解析【解析】【分析】连接AC,首先根据“HL”判定ABCCDA,得到AD=BC,再证ADOCBO,则可得到需证的结论.【详解】证明:连接AC.在RtABC和RtCDA中,ABCCDA.AD=BC.,AD0=C
15、B0=90.又AOD=COB,ADOCBO.【考点】本题考查了全等三角形的判定定理,能灵活运用全等三角形的判定定理进行推理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS2、(1)证明见解析;(2)ACD、ABE、BCE、BHG【解析】【详解】分析:(1)由ACBD、BFCD知ADE+DAE=CGF+GCF,根据BGE=ADE=CGF得出DAE=GCF即可得;(2)设DE=a,先得出AE=2DE=2a、EG=DE=a、AH=HE=a、CE=AE=2a,据此知SADC=2a2=2SADE,证ADEBGE得BE=AE=2a,再分别求出SABE、SACE、SBHG,从而得出
16、答案详解:(1)BGE=ADE,BGE=CGF,ADE=CGF,ACBD、BFCD,ADE+DAE=CGF+GCF, 线 封 密 内 号学级年名姓 线 封 密 外 DAE=GCF,AD=CD;(2)设DE=a,则AE=2DE=2a,EG=DE=a,SADE=AEDE=2aa=a2,BH是ABE的中线,AH=HE=a,AD=CD、ACBD,CE=AE=2a,则SADC=ACDE=(2a+2a)a=2a2=2SADE;在ADE和BGE中,ADEBGE(ASA),BE=AE=2a,SABE=AEBE=(2a)2a=2a2,SACE=CEBE=(2a)2a=2a2,SBHG=HGBE=(a+a)2a=
17、2a2,综上,面积等于ADE面积的2倍的三角形有ACD、ABE、BCE、BHG点睛:本题主要考查全等三角形的判定与性质,解题的关键是掌握等腰三角形的判定与性质及全等三角形的判定与性质3、见解析【解析】【分析】先作,再以为圆心,分别以线段a、b长为半径,画弧与射线、交于点,即可【详解】解:先作,再以为圆心,分别以线段a、b长为半径,画弧与射线、交于点,连接,即为所求,如图所示:【考点】本题考查了复杂作图,利用了作一个角等于已知角,作线段等于已知线段,是基本作图,需熟练掌握解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作4、(1);(2)【解析】
18、【分析】(1)如图1,过点C作CHDF,根据四边形的内角和为360,求出MDC+CBN=160,利用角平分线的定义可得:FDC+CBE=80,最后根据平行线的性质可得结论;(2)如图2,连接GC并延长,同理得:MDC+CBN=160,FDC+CBE=80,求出DGB=40,可得结论 线 封 密 内 号学级年名姓 线 封 密 外 【详解】(1)如图1,过点C作CHDF,BEDF,BEDFCH,FDC=DCH,BCH=EBC,DCB=DCH+BCH=FDC+EBC,BE,DF分别为四边形ABCD的外角CBN,MDC的平分线,FDC=CDM,EBC=CBN,A+BCD=160,ADC+ABC=360
19、-160=200,MDC+CBN=160,FDC+CBE=80,DCB=80;(2)如图2,连接GC并延长,同理得MDC+CBN=160,MDF+NBG=80,BEAD,DFAB,A=MDF=DGB=NBG=40,A+BCD=160,BCD=160-40=120【考点】本题考查了平行线的性质及其判定,多边形的内角和公式,三角形外角的性质,角平分线的定义,利用多边形的内角和公式和平行线的性质是解题关键5、证明见解析.【解析】【分析】利用SSS可证明ABDACE,可得BAD=1,ABD=2,根据三角形外角的性质即可得3=BAD+ABD,即可得结论.【详解】在ABD和ACE中,ABDACE,BAD=1,ABD=2, 线 封 密 内 号学级年名姓 线 封 密 外 3=BAD+ABD,3=1+2.【考点】本题考查全等三角形的判定与性质及三角形外角性质,熟练掌握判定定理及外角性质是解题关键.