1、人教版八年级数学上册第十一章三角形综合测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、能够铺满地面的正多边形组合是()A正三角形和正五边形B正方形和正六边形C正方形和正八边形D正五边形和正十边形2、如
2、图,在ABC中,D为BC上一点,12,34,BAC105,则DAC的度数为()A80B82C84D863、如图,1、2、3中是ABC外角的是()A1、2B2、3C1、3D1、2、34、已知一个多边形的每一个内角都比它相邻的外角的4倍多30,这个多边形是()A十边形B十一边形C十二边形D十三边形5、下列长度的3根小木棒不能搭成三角形的是()A2cm,3cm,4cmB1cm,2cm,3cmC3cm,4cm,5cmD4cm,5cm,6cm6、如图,中,则的度数是()ABCD7、下列四个选项中不是命题的是()A对顶角相等B过直线外一点作直线的平行线C三角形任意两边之和大于第三边D如果,那么8、如图,A
3、BCD,1=45,3=80,则2的度数为()A30B35C40D459、如图,AE是的中线,已知,则BD的长为A2B3C4D610、在下列条件中:ABC;AB2C;ABaC;ABC123,能确定ABC为直角三角形的条件有()A1个B2个C3个D4个第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,点D在线段BC上,ACBC,AB8cm,AD6cm,AC4cm,则在ABD中,BD边上的高是_cm2、已知a,b,c是ABC的三边长,满足,c为奇数,则ABC的周长为_3、如图,在中,则x_4、正多边形的每个内角等于,则这个正多边形的边数为_条5、如图,中,点,分别在,上,
4、与交于点,若,则的面积_三、解答题(5小题,每小题10分,共计50分)1、如图是两位小朋友在探究某多边形的内角和时的一段对话,请根据他们的对话内容判断他们是在求几边形?少加的内角为多少度?2、如图所示,求的度数3、(1)探究:如图1,求证:;(2)应用:如图2,求的度数4、如图,中,、是角平分线,它们相交于点O,是高,求及的度数5、已知:如图,点B、C在线段AD的异侧,点E、F分别是线段AB、CD上的点,AEGAGE,CDGC(1)求证:AB/CD;(2)若AGE+AHF=180,求证:B=C;(3)在(2)的条件下,若BFC=4C,求D的度数-参考答案-一、单选题1、C【解析】【分析】利用正
5、多边形内角度数=180-360边数,计算出正多边形的内角,根据题意能够铺满地面的图形,即是两种或两种以上几何图形镶嵌成平面,围绕一点拼在一起的多边形的内角加在一起恰好组成一个360的周角,据此判断即可【详解】A、正三角形和正五边形内角分别为60、108,由于60m+108n=360,得,显然n取任何正整数时,m不能得正整数,故不能铺满,不符合题意;B、正方形和正六边形内角分别为90、120,90m+120n=360,同理m、n不存在正整数值使之成立,故不能铺满,不符合题意;C、正方形的每个内角为90,正八边形的每个内角为135,90m+135n=360,当m=1,n=2时等式成立,符合题意;D
6、、正五边形和正十边形内角分别为108、144,108m+144n=360,同理m、n不存在正整数值使之成立,故不能铺满地面,不符合题意故选:C【考点】此题主要考查了平面镶嵌,属于基础题,熟练掌握镶嵌的含义是解题的关键2、A【解析】【分析】根据三角形的内角和定理和三角形的外角性质即可解决【详解】解:BAC105,237512,431222把代入得:3275,225DAC1052580故选A【考点】此题主要考查了三角形的外角性质以及三角形内角和定理,熟记三角形的内角和定理,三角形的外角性质是解题的关键3、C【解析】【分析】根据三角形外角的定义进行分析即可得到答案.【详解】解:属于ABC外角的有1、
7、3共2个故选C【考点】本题考查三角形外角的定义,解题的关键是掌握三角形的定义.4、C【解析】【分析】首先设多边形的每一个外角为x,则内角为(4x+30),根据内角与相邻的外角是互补关系可得x+4x+30=180,解方程可得x的值,再利用外角和360外角的度数可得边数【详解】解:设外角为x,由题意得:x+4x+30=180,解得:x=30,36030=12,这个多边形是十二边形故选:C【考点】本题主要考查多边形内角与外角的知识点,解题的关键是内角与相邻的外角是互补关系,构建方程求解5、B【解析】【分析】看哪个选项中两条较小的边的和大于最大的边即可【详解】A,能构成三角形,不合题意;B,不能构成三
8、角形,符合题意;C,能构成三角形,不合题意;D,能构成三角形,不合题意故选B【考点】此题考查了三角形三边关系,解题关键在于看较小的两个数的和能否大于第三个数6、D【解析】【分析】由三角形的内角和定理求出C的度数,然后由平行线的性质,即可得到答案【详解】解:在中,;故选:D【考点】本题考查了三角形的内角和定理,以及平行线的性质,解题的关键是掌握所学的性质,正确求出角的度数7、B【解析】【分析】判断一件事情的语句,叫做命题根据定义判断即可【详解】解:由题意可知,A、对顶角相等,故选项是命题;B、过直线外一点作直线的平行线,是一个动作,故选项不是命题;C、三角形任意两边之和大于第三边,故选项是命题;
9、D、如果,那么,故选项是命题;故选:B【考点】本题考查了命题与定理:判断一件事情的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理注意:疑问句与作图语句都不是命题8、B【解析】【详解】分析:根据平行线的性质和三角形的外角性质解答即可详解:如图,ABCD,1=45,4=1=45,3=80,2=3-4=80-45=35,故选B点睛:此题考查平行线的性质,关键是根据平行线的性质和三角形的外角性质解答9、A【解析】【详解】试题解析:AE是ABC的中线,EC=4,BE=EC=4,DE=2,BD=BE-DE=4-2=2故选A10、B【解析】【详解】分析:根据所给的4个条
10、件分别求出4个条件下ABC中的最大角的度数,再进行判断即可.详解:A+B=C,A+B+C=180,C=180=90,此时ABC是直角三角形;A=B=2C,A+B+C=180,5C=180,解得C=36,A=B=72,此时ABC不是直角三角形;ABaC,A+B+C=180,(2a+1)C=180,解得C=,A=B=,此时ABC中三个内角的度数是不确定的,不能确定ABC是否是直角三角形;ABC123,A+B+C=180,C=180=90,此时ABC是直角三角形.综上所述,根据上述条件能够确定ABC是直角三角形的有2个.故选B.点睛:本题的解题要点是:“根据已知条件结合三角形内角和是180确定出AB
11、C的最大角的度数即可判断此时ABC是否是直角三角形了”.二、填空题1、4cm【解析】【分析】从三角形的一个顶点向它对边所作的垂线段(顶点至对边垂足间的线段),叫做三角形的高这条边叫做底【详解】因为ACBC,所以三角形ABD中,BD边上的高是:AC=4cm故答案为:4cm【考点】考核知识点:三角形的高理解三角形的高的定义是关键2、16【解析】【分析】根据非负数的性质列式求出a、b的值,再根据三角形的任意两边之和大于第三边,两边之差小于第三边求出c的取值范围,再根据c是奇数求出c的值【详解】解:a,b满足,解得a=7,b=2,5c9,又c为奇数,c=7,ABC的周长为:故答案为:16【考点】本题考
12、查了绝对值、平方的非负性,三角形的三边关系等知识点解题的关键是确定边长c的取值范围3、130【解析】【分析】由可得,再由,即可求解;【详解】解:,故答案为:130【考点】本题主要考查三角形的内角和定理,掌握三角形的内角和定理并灵活应用是解本题的关键4、12【解析】【详解】多边形内角和为180(n-2),则每个内角为180(n-2)n,n=12,所以应填12.5、7.5【解析】【分析】观察三角形之间的关系,利用等高或同高的两个三角形的面积之比等于底之比,利用已知比例关系进行转化求解【详解】如下图所示,连接, ,设, ,由,可得, ,解得 , 故答案为:7.5【考点】本题考查的是等高同高三角形,应
13、用等高或同高的两个三角形的面积之比等于底之比进行求解是本题的关键三、解答题1、他们在求九边形的内角和;少加的那个内角为120度【解析】【分析】根据n边形的内角和公式,则内角和应是180的倍数,且每一个内角应大于0而小于180度,根据这些条件进行分析求解即可【详解】解:1140180660,则边数是:6+1+29;他们在求九边形的内角和;18060120,少加的那个内角为120度【考点】本题主要考查多边形内角和公式的灵活运用,解题的关键是找到相应度数的等量关系注意多边形的一个内角一定大于0,并且小于180度2、360【解析】【分析】先根据三角形的外角性质可得,再根据四边形的内角和即可得【详解】是
14、的一个外角同理可得又故的度数为【考点】本题考查了四边形的内角和、三角形的外角性质、对顶角相等,熟记并灵活运用各性质是解题关键3、230【解析】【分析】(1)连接OA并延长,由三角形外角的性质可知1B3,2C4,两式相加即可得出结论;(2)连接AD,由(1)的结论可知F23DEF,14CABC,两式相加即可得出结论【详解】(1)如图1,连接AO并延长,是的外角,.;是的外角,;+,得,.(2)如图2,连接AD.由(1),得;+得:,.【考点】本题考查的是三角形外角的性质,根据题意作出辅助线,构造出三角形是解答此题的关键4、DAC=40,BOA=115【解析】【分析】由直角三角形两锐角互余知DAC
15、=40度,根据三角形内角和定理得CAB+ABC= 130,AF、BE是角平分线,则BAO+ABO=(CAB +ABC)=65,从而得出答案【详解】解:AD 是高,C=50ADC= 90, DAC= 90-50=40,C= 50,CAB+ABC = 130,AF、BE是角平分线,BAO+ABO=(CAB +ABC)= (180-50)=130=65,BOA= 180- 65 = 115【考点】本题主要考查了高的概念、直角三角形的性质、三角形内角和定理,角平分线的定义,做题的关键是角平分线性质的运用5、(1)见解析;(2)见解析;(3)108【解析】【分析】(1)根据对顶角相等结合已知条件得出AE
16、GC,根据内错角相等两直线平行即可证得结论;(2)由AGE+AHF=180等量代换得DGC+AHF=180可判断EC/BF,两直线平行同位角相等得出B=AEG,结合(1)得出结论;(3)由(2)证得EC/BF,得BFC+C=180,求得C的度数,由三角形内角和定理求得D的度数【详解】证明:(1)AEG=AGE,C=DGC,AGE=DGCAEG=CAB/CD(2)AGE=DGC,AGE+AHF=180DGC+AHF=180EC/BFB=AEG由(1)得AEG=CB=C(3)由(2)得EC/BFBFC+C=180BFC=4CC=36DGC=36C+DGC+D=180D=108【考点】此题考查了平行线的判定与性质,三角形内角和定理,熟记“内错角相等,两直线平行”、“同旁内角互补,两直线平行”及“两直线平行,同旁内角互补”是解题的关键