1、人教版八年级数学上册第十一章三角形同步测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,已知a/b,1=120,2=90,则3的度数是()A120B130C140D1502、如图,ABC的角平分线
2、AD,中线BE交于点O,则结论:AO是ABE的角平分线;BO是ABD的中线其中()A、都正确B、都不正确C正确不正确D不正确,正确3、能说明“锐角,锐角的和是锐角”是假命题的例证图是()ABCD4、两个直角三角板如图摆放,其中,AB与DF交于点M若,则的大小为()ABCD5、如图,在RtABF中,F=90,点C是线段BF上异于点B和点F的一点,连接AC,过点C作CDAC交AB于点D,过点C作CEAB交AB于点E,则下列说法中,错误的是()AABC中,AB边上的高是CEBABC中,BC边上的高是AFCACD中,AC边上的高是CEDACD中,CD边上的高是AC6、如图,三角形的个数是()A4个B3
3、个C2个D1个7、如图,ABCD,BED=61,ABE的平分线与CDE的平分线交于点F,则DFB=()A149B149.5C150D150.58、若菱形ABCD的一条对角线长为8,边CD的长是方程x210x+240的一个根,则该菱形ABCD的周长为()A16B24C16或24D489、如图,已知ABC中,BD、CE分别是ABC的角平分线,BD与CE交于点O,如果设BACn(0n180),那么BOE的度数是()A90nB90nC45+nD180n10、一个多边形除一个内角外其余内角的和为1510,则这个多边形对角线的条数是()A27B35C44D54第卷(非选择题 70分)二、填空题(5小题,每
4、小题4分,共计20分)1、正多边形的每个内角等于,则这个正多边形的边数为_条2、如图,三角形ABC中,D是AB上一点,F是BC上一点,E,H是AC上的点,EF的延长线交AB的延长线于点G,连接DE,DH,DEBC若CEFCHD,EFCADH,CEF:EFC5:2,C47,则ADE的度数为_3、在ABC中,AD是BC边上的中线,ADC的周长比ABD的周长多3cm,已知AB4cm,则AC的长为 _4、如果一个多边形的每个外角都是,那么这个多边形内角和的度数为_5、如图,BE、CF是ABC的角平分线,BE、CF相交于点D,若,则CDE的度数为_三、解答题(5小题,每小题10分,共计50分)1、如图,
5、在图(1)中,猜想:_度请说明你猜想的理由如果把图1成为2环三角形,它的内角和为;图2称为2环四边形,它的内角和为则2环四边形的内角和为_度;2环五边形的内角和为_度;2环n边形的内角和为_度2、如图,在RtABE中,AEB=90,C为AE延长线上的一点,D为AB边上的一点,DC交BE于F,若ADC=80,B=30,求C的度数3、已知一个多边形每个内角都比它相邻外角大60(1)求这个多边形的内角和;(2)求这个多边形所有对角线的条数4、已知直线l1l2,直线l3和直线l1、l2交于点C和D,点P是直线l3上一动点(1)如图1,当点P在线段CD上运动时,PAC,APB,PBD之间存在什么数量关系
6、?请你猜想结论并说明理由(2)当点P在C、D两点的外侧运动时(P点与点C、D不重合,如图2和图3),上述(1)中的结论是否还成立?若不成立,请直接写出PAC,APB,PBD之间的数量关系,不必写理由5、(1)已知:如图,边形求证:边形的内角和等于;(2)在一个各内角都相等的多边形中,每一个内角都比相邻的外角的3倍还大20求这个多边形的内角和;(3)粗心的小明在计算一个多边形的内角和时,误把一个外角也加进去了,得其和为1180请直接写出这个多加的外角度数及多边形的边数-参考答案-一、单选题1、D【解析】【分析】延长的边与直线相交,然后根据两直线平行,同旁内角互补求出,再根据三角形的一个外角等于与
7、它不相邻的两个内角的和列式计算即可得解【详解】如图,延长的边与直线相交,由三角形的外角性质可得,故选:【考点】本题考查了平行线的性质,以及三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并作出辅助线是解题的关键2、C【解析】【分析】根据三角形的角平分线的定义,三角形的中线的定义可知三角形其中一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线,连接一个顶点和它所对边的中点的线段叫做三角形的中线【详解】解:AD是三角形ABC的角平分线,则是BAC的角平分线,所以AO是ABE的角平分线,故正确;BE是三角形ABC的中线,则E是AC是中点,而O不一定是AD的
8、中点,故错误故选:C【考点】本题考查了三角形的中线,角平分线的定义,理解定义是解题的关键3、C【解析】【分析】先将每个图形补充成三角形,再利用三角形的外角性质逐项判断即得答案【详解】解:A、如图1,1是锐角,且1=,所以此图说明“锐角,锐角的和是锐角”是真命题,故本选项不符合题意; B、如图2,2是锐角,且2=,所以此图说明“锐角,锐角的和是锐角”是真命题,故本选项不符合题意;C、如图3,3是钝角,且3=,所以此图说明“锐角,锐角的和是锐角”是假命题,故本选项符合题意;D、如图4,4是锐角,且4=,所以此图说明“锐角,锐角的和是锐角”是真命题,故本选项不符合题意故选:C【考点】本题考查了真假命
9、题、举反例说明一个命题是假命题以及三角形的外角性质等知识,属于基本题型,熟练掌握上述基本知识是解题的关键4、C【解析】【分析】根据,可得再根据三角形内角和即可得出答案【详解】由图可得,故选:C【考点】本题考查了平行线的性质和三角形的内角和,掌握平行线的性质和三角形的内角和是解题的关键5、C【解析】【分析】根据三角形某边上的高的定义(从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段叫做三角形的高),依次检验四个选项,即可得到答案【详解】解:根据三角形某边上的高的定义验证:A. ABC中,AB边上的高是CE,故A正确;B. ABC中,BC边上的高是AF,故B正确;C. ACD中,
10、AC边上的高是CD,故C错误;D. ACD中,CD边上的高是AC,故D正确;故选C【考点】本题考查了三角形某边上的高的定义;从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段叫做三角形的高,掌握此定义是解题的关键6、B【解析】【分析】根据三角形的定义可直接进行解答【详解】解:由图可得:三角形有:ABC、ABD、ADC,所以三角形的个数为3个;故选B【考点】本题主要考查三角形的概念,正确理解三角形的概念是解题的关键7、B【解析】【分析】过点E作EGAB,根据平行线的性质可得“ABE+BEG=180,GED+EDC=180”,根据角的计算以及角平分线的定义可得“FBE+EDF=AB
11、E+CDE)”,再依据四边形内角和为360结合角的计算即可得出结论【详解】如图,过点E作EGAB,ABCD,ABCDGE,ABE+BEG=180,GED+EDC=180,ABE+CDE+BED=360;又BED=61,ABE+CDE=299ABE和CDE的平分线相交于F,FBE+EDF=(ABE+CDE)=149.5,四边形的BFDE的内角和为360,BFD=360-149.5-61=149.5故选B【考点】本题考查了平行线的性质、三角形内角和定理以及四边形内角和为360,解决该题型题目时,根据平行线的性质得出相等(或互补)的角是关键8、B【解析】【分析】解方程得出x4或x6,分两种情况:当A
12、BAD4时,4+48,不能构成三角形;当ABAD6时,6+68,即可得出菱形ABCD的周长【详解】解:如图所示:四边形ABCD是菱形,ABBCCDAD,x210x+240,因式分解得:(x4)(x6)0,解得:x4或x6,分两种情况:当ABAD4时,4+48,不能构成三角形;当ABAD6时,6+68,菱形ABCD的周长4AB24故选:B【考点】本题考查菱形的性质、解一元二次方程-因式分解法、三角形的三边关系,熟练掌握并灵活运用是解题的关键9、A【解析】【分析】根据BD、CE分别是ABC的角平分线和三角形的外角,得到,再利用三角形的内角和,得到,代入数据即可求解【详解】解:BD、CE分别是ABC
13、的角平分线,故答案选:A【考点】本题考查三角形的内角和定理和外角的性质涉及角平分线的性质三角形的内角和定理:三角形的内角和等于三角形的一个外角等于与它不相邻的两个内角之和10、C【解析】【详解】设这个内角度数为x,边数为n,(n2)180x=1510,180n=1870+x,n为正整数,n=11,=44,故选C.点睛:此题考查多边形的内角和计算公式以及多边形的对角线条数的计算方法,属于需要识记的知识.二、填空题1、12【解析】【详解】多边形内角和为180(n-2),则每个内角为180(n-2)n,n=12,所以应填12.2、76【解析】【分析】根据平行线的性质和三角形的内角和解答即可【详解】解
14、:CEFCHD,DHGE,ADHG,EFCADH,BFGEFC,GBFG,ABCG+BFG2EFC,CEF:EFC5:2,C47,EFC38,ABC76,DEBC,ADEABC76,故答案为:76【考点】本题主要考查了平行线的性质和三角形内角和定理,准确计算是解题的关键3、7cm#7厘米【解析】【分析】根据中线的定义知,结合三角形周长可得,根据题意,即可得出AC的长度【详解】解:如图所示:AD是BC边上的中线,D为BC的中点,即,故答案为:7cm【考点】本题考查了三角形的中线性质,理解题意,作出图形是解题关键4、【解析】【分析】根据正多边形的性质,边数等于360除以每一个外角的度数,然后利用多
15、边形的内角和公式计算内角和即可【详解】解:一个多边形的每个外角都是60,n=36060=6,则内角和为:(6-2)180=720,故答案为:720【考点】本题主要考查了利用外角求正多边形的边数的方法以及多边形的内角和公式,解题的关键是掌握任意多边形的外角和都等于360度5、60;【解析】【分析】根据三角形内角和,可得ABC+ACB的度数,再由角平分线的性质,可得DCB+DBC的度数,根据外角性质得出CDE的度数【详解】解:,ABC+ACB=;BE、CF是ABC和ACB的角平分线,,;由外角性质可得:故答案为:【考点】本题主要考查角平分线性质、三角形的内角和与外角和性质,熟练掌握角度之间的大小关
16、系与转化是解题的关键三、解答题1、360,见解析;720,1080;【解析】【分析】连接将已知图形补全为闭合四边形,根据三角形的外角性质可得,进而根据四边形的内角和即可求得;同理将2环四边形补全为五边形和三角形,2环五边形补全为六边形和四边形,2环n边形补全为和边形,根据多边形的内角和定理求解即可【详解】解:猜想:360连接,如图,2环四边形中,如图,连接则2环四边形的内角和同理2环五边形补全为六边形和四边形,则内角和为2环n边形补全为和边形,则内角和为故答案为:360,720,1080;【考点】本题考查了多边形的内角和,三角形的外角性质,将2环n边形补全为和边形是解题的关键2、C的度数为40
17、【解析】【分析】根据直角三角形的两个锐角互余即可求出A,然后根据三角形的内角和定理即可求出结论【详解】解:在RtABE中,AEB=90,B=30A=90- B=60 在ADC中,A=60,ADC=80C=180- 60 - 80=40答:C的度数为40【考点】此题考查的是三角形的内角和定理的应用,掌握三角形的内角和定理和直角三角形的两个锐角互余是解决此题的关键3、 (1)720(2)9【解析】【分析】(1)设这个多边形为n边形,根据多边形外角和为360度,结合条件一个多边形每个内角都比它相邻外角大60列出方程求解即可;(2)根据n边形一个顶点有(n-3)条对角线求解即可(1)解:设这个多边形为
18、n边形,由题意得:,解得,这个多边形的内角和为(2)解:由(1)得这个多边形为六边形,从六边形的一个顶点出发一共有6-3=3条对角线,这个多边形所有对角线的条数为条【考点】本题主要考查了多边形内角和与外角和问题,多边形对角线问题,熟练掌握多边形内角和与外角和以及多边形对角线的知识是解题的关键4、(1)APB=PAC+PBD;(2)不成立【解析】【分析】(1)当P点在C、D之间运动时,首先过点P作PEl1,由l1l2,可得PEl2l1,根据两直线平行,内错角相等,即可求得:APB=PAC+PBD(2)当点P在C、D两点的外侧运动时,由直线l1l2,根据两直线平行,同位角相等与三角形外角的性质,即
19、可求得:PAC=PBD+APB或PBD=PAC+APB【详解】(1)如图1,当P点在C、D之间运动时,APB=PAC+PBD理由如下:过点P作PEl1,l1l2,PEl2l1,PAC=1,PBD=2,APB=1+2=PAC+PBD;(2)不成立如图2,当点P在C、D两点的外侧运动,且在l2下方时,PAC=PBD+APB理由如下:l1l2,PED=PAC,PED=PBD+APB,PAC=PBD+APB如图3,当点P在C、D两点的外侧运动,且在l1上方时,PBD=PAC+APB理由如下:l1l2,PEC=PBD,PEC=PAC+APB,PBD=PAC+APB【考点】考查平行线的判定与性质,三角形外
20、角的性质等,三角形的一个外角等于与它不相邻的两个内角的和.5、(1)见解析;(2)1260;(3)100,8【解析】【分析】(1)由从n边形的一个顶点可以作(n3)条对角线,根据分割的三角形个数及三角形内角和定理解答;(2)设多边形的一个外角为,则与其相邻的内角为(320),由邻补角的和为180解答;(3)由内角和公式得到内角和是180的倍数,可解得多边形的边数,据此解答【详解】解:(1)从n边形的一个顶点可以作(n3)条对角线,得出把三角形分割成的三角形个数为:n3+1n2这(n2)个三角形的内角和都等于180,n边形的内角和是(n2)180(方法不唯一)(2)设多边形的一个外角为,则与其相邻的内角为(320)由题意,得(320)180解得40,即多边形的每个外角为40多边形的外角和为360,多边形的边数为360409内角和为(92)1801260答:这个多边形的内角和为1260(3)因为1180=1806+100所以该多边形的边数是8,这个外角的度数是100【考点】本题考查多边形的内角和与外角和定理,是基础考点,掌握相关知识是解题关键