1、人教版九年级数学上册第二十四章圆专项训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在ABCD中,为的直径,O和相切于点E,和相交于点F,已知,则的长为()ABCD22、已知O中最长的弦为8cm
2、,则O的半径为()cmA2B4C8D163、如图,公园内有一个半径为18米的圆形草坪,从地走到地有观赏路(劣弧)和便民路(线段).已知、是圆上的点,为圆心,小强从走到,走便民路比走观赏路少走()米.ABCD4、如图,O是RtABC的外接圆,ACB90,过点C作O的切线,交AB的延长线于点D设A,D,则()AB+90C2+90D+2905、有一个圆的半径为5,则该圆的弦长不可能是()A1B4C10D116、如图,是的弦,点在过点的切线上,交于点若,则的度数等于()ABCD7、如图,在ABC中, AG平分CAB,使用尺规作射线CD,与AG交于点E,下列判断正确的是()AAG平分CDBC点E是ABC
3、的内心D点E到点A,B,C的距离相等8、一个商标图案如图中阴影部分,在长方形中,以点为圆心,为半径作圆与的延长线相交于点,则商标图案的面积是()ABCD9、以原点O为圆心的圆交x轴于A、B两点,交y轴的正半轴于点C,D为第一象限内O上的一点,若DAB25,则OCD()A50B40C70D3010、如图,拱桥可以近似地看作直径为250m的圆弧,桥拱和路面之间用数根钢索垂直相连,其正下方的路面AB长度为150m,那么这些钢索中最长的一根的长度为()A50mB40mC30mD25m第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,O是ABC的外接圆,A60,BC6,则O的
4、半径是_2、刘徽是我国魏晋时期卓越的数学家,他在九章算术中提出了“割圆术”,利用圆的内接正多边形逐步逼近圆来近似计算圆的面积,如图,若用圆的内接正十二边形的面积来近似估计的面积,设的半径为1,则_.3、已知圆锥的底面半径为,侧面展开图的圆心角是180,则圆锥的高是_4、如图,AB是O的直径,C是O上的点,过点C作O的切线交AB的延长线于点D若A=32,则D=_度5、如图,是的外接圆的直径,若,则_三、解答题(5小题,每小题10分,共计50分)1、如图,在O中,ACB=60,求证AOB=BOC=COA.2、如图,为的直径,射线交于点F,点C为劣弧的中点,过点C作,垂足为E,连接(1)求证:是的切
5、线;(2)若,求阴影部分的面积3、如图,内接于,则的直径等于多少?4、如图,四边形OABC中,OA=OC, BA=BC以O为圆心,以OA为半径作O(1)求证:BC是O的切线:(2)连接BO并延长交O于点D,延长AO交O于点E,与此的延长线交于点F若补全图形;求证:OF=OB5、(1)课本再现:在中,是所对的圆心角,是所对的圆周角,我们在数学课上探索两者之间的关系时,要根据圆心O与的位置关系进行分类图1是其中一种情况,请你在图2和图3中画出其它两种情况的图形,并从三种位置关系中任选一种情况证明;(2)知识应用:如图4,若的半径为2,分别与相切于点A,B,求的长-参考答案-一、单选题1、C【解析】
6、【分析】首先求出圆心角EOF的度数,再根据弧长公式,即可解决问题【详解】解:如图连接OE、OF,CD是O的切线,OECD,OED=90,四边形ABCD是平行四边形,C=60,A=C=60,D=120,OA=OF,A=OFA=60,DFO=120,EOF=360-D-DFO-DEO=30,的长故选:C【考点】本题考查切线的性质、平行四边形的性质、弧长公式等知识,解题的关键是求出圆心角的度数,记住弧长公式2、B【解析】【分析】O最长的弦就是直径从而不难求得半径的长【详解】解:O中最长的弦为8cm,即直径为8cm,O的半径为4cm故选:B.【考点】本题考查弦,直径等知识,记住圆中的最长的弦就是直径是
7、解题的关键3、D【解析】【分析】作OCAB于C,如图,根据垂径定理得到AC=BC,再利用等腰三角形的性质和三角形内角和计算出A,从而得到OC和AC,可得AB,然后利用弧长公式计算出的长,最后求它们的差即可【详解】解:作OCAB于C,如图,则AC=BC,OA=OB,A=B=(180-AOB)=30,在RtAOC中,OC=OA=9,AC=,AB=2AC=,又=,走便民路比走观赏路少走米,故选D【考点】本题考查了垂径定理:垂径定理和勾股定理相结合,构造直角三角形,可解决计算弦长、半径、弦心距等问题4、C【解析】【分析】连接OC, 由BOC是AOC的外角,可得BOC2A2,由CD是O的切线,可求OCD
8、90,可得D902即可【详解】连接OC,如图,O是RtABC的外接圆,ACB90,AB是直径,A,OA=OC,BOC是AOC的外角,A=ACO,BOC=A+ACO2A2,CD是O的切线,OCCD,OCD90,D90BOC902,2+90故选:C【考点】本题考查圆的半径相等,三角形外角性质,切线性质,直角三角形两锐角互余性质,掌握圆的半径相等,三角形外角性质,切线性质,直角三角形两锐角互余性质5、D【解析】【分析】根据圆的半径为5,可得到圆的最大弦长为10,即可求解【详解】半径为5,直径为10,最长弦长为10,则不可能是11故选:D【考点】本题主要考查了圆的基本性质,理解圆的直径是圆的最长的弦是
9、解题的关键6、B【解析】【分析】根据题意可求出APO、A的度数,进一步可得ABO度数,从而推出答案.【详解】,APO=70,AOP=90,A=20,又OA=OB,ABO=20,又点C在过点B的切线上,OBC=90,ABC=OBCABO=9020=70,故答案为:B.【考点】本题考查的是圆切线的运用,熟练掌握运算方法是关键.7、C【解析】【分析】根据作法可得CD平分ACB,结合题意即可求解【详解】解:由作法得CD平分ACB,AG平分CAB,E点为ABC的内心故答案为:C【考点】此题考查了尺规作图(角平分线),以及三角形角平分线的性质,熟练掌握相关基本性质是解题的关键8、D【解析】【分析】根据题意
10、作辅助线DE、EF使BCEF为一矩形,从图中可以看出阴影部分的面积=三角形的面积-(正方形的面积-扇形的面积),依据面积公式进行计算即可得出答案【详解】解:作辅助线DE、EF使BCEF为一矩形则SCEF=(8+4)42=24cm2,S正方形ADEF=44=16cm2,S扇形ADF=4cm2,阴影部分的面积=24-(16-4)=故选:D【考点】本题主要考查扇形的面积计算,解题的关键是作出辅助线并从图中看出阴影部分的面积是由哪几部分组成的9、C【解析】【分析】根据圆周角定理求出DOB,根据等腰三角形性质求出OCD=ODC,根据三角形内角和定理求出即可【详解】解:连接OD,DAB=25,BOD=2D
11、AB=50,COD=90-50=40,OC=OD,OCD=ODC=(180-COD)=70,故选:C【考点】本题考查了圆周角定理,等腰三角形性质,三角形内角和定理的应用,主要考查学生的推理能力,题目比较典型,难度适中10、D【解析】【分析】设圆弧的圆心为O,过O作OCAB于C,交于D,连接OA,先由垂径定理得ACBCAB75m,再由勾股定理求出OC100m,然后求出CD的长即可【详解】解:设圆弧的圆心为O,过O作OCAB于C,交于D,连接OA,则OAOD250125(m),ACBCAB15075(m),OC100(m),CDODOC12510025(m),即这些钢索中最长的一根为25m,故选:
12、D【考点】本题考查了垂径定理和勾股定理等知识;熟练掌握垂径定理和勾股定理是解题的关键二、填空题1、6【解析】【分析】作直径CD,如图,连接BD,根据圆周角定理得到CBD90,D60,然后利用含30度的直角三角形三边的关系求出CD,从而得到O的半径【详解】解:作直径CD,如图,连接BD,CD为O直径,CBD90,DA60,BDBC66,CD2BD12,OC6,即O的半径是6故答案为6【考点】本题主要考查圆周角的性质,解决本题的关键是要熟练掌握圆周角的性质.2、【解析】【分析】如图,过点A作ACOB,垂足为C,先求出圆的面积,再求出ABC面积,继而求得正十二边形的面积即可求得答案.【详解】如图,过
13、点A作ACOB,垂足为C,的半径为1,的面积,OA=OB=1,圆的内接正十二边形的中心角为AOB=,AC=OB=,SAOB=OBAC=,圆的内接正十二边形的面积S1=12SAOB=3,则,故答案为【考点】本题考查了正多边形与圆,正确的求出正十二边形的面积是解题的关键3、【解析】【分析】设圆锥的母线长为R cm,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和弧长公式得到25=,然后解方程即可得母线长,然后利用勾股定理求得圆锥的高即可【详解】解:设圆锥的母线长为R cm,根据题意得25=,解得R=10即圆锥的母线长为10cm,圆锥的高为:(cm)故答案
14、为:【考点】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长4、26【解析】【详解】分析:连接OC,根据圆周角定理得到COD=2A,根据切线的性质计算即可详解:连接OC,由圆周角定理得,COD=2A=64,CD为O的切线,OCCD,D=90-COD=26,故答案为26点睛:本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键5、【解析】【分析】连接BD,如图,根据圆周角定理得到ABD=90,则利用互余计算出D=50,然后再利用圆周角定理得到ACB的度数【详解】连接BD,如图,AD为ABC的外接圆O的直径,A
15、BD=90,D=90-BAD=90-40=50,ACB=D=50故答案为:50【考点】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半三、解答题1、详见解析.【解析】【详解】试题分析:根据弧相等,则对应的弦相等从而证明AB=AC,则ABC易证是等边三角形,然后根据同圆中弦相等,则对应的圆心角相等即可证得试题解析:证明:,AB=AC,ABC为等腰三角形(相等的弧所对的弦相等)ACB=60ABC为等边三角形,AB=BC=CAAOB=BOC=COA(相等的弦所对的圆心角相等)2、(1)证明见解析;(2)【解析】【分析】(1)连接BF,证明BF/CE,连
16、接OC,证明OCCE即可得到结论;(2)连接OF,求出扇形FOC的面积即可得到阴影部分的面积【详解】(1)连接,是的直径,即,连接,点C为劣弧的中点,OC是的半径,CE是的切线;(2)连接,点C为劣弧的中点, S扇形FOC=,即阴影部分的面积为:【考点】本题主要考查了切线的判定以及扇形面积的求法,熟练掌握切线的判定定理以及扇形面积的求法是解答此题的关键3、12【解析】【分析】连接OB、OC,如图,利用圆周角定理得到BOC60,则可判断OBC为等边三角形,从而得到OB6【详解】解:连接OB、OC,如图,BOC2BAC23060,而OBOC,OBC为等边三角形,OBBC6,O的直径等于12故答案为
17、:12【考点】本题考查了三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心也考查了圆周角定理,掌握这些知识点是解题关键4、 (1)证明见解析(2)图见解析(2)证明见解析【解析】【分析】(1)连接AC,根据等腰三角形的性质得到OACOCA,BACBCA,得到OCBOAB90,根据切线的判定定理证明;(2)根据题意画出图形;根据切线长定理得到BABC,得到BD是AC的垂直平分线,根据垂径定理、圆心角和弧的关系定理得到AOC120,根据等腰三角形的判定定理证明结论【详解】(1)证明:如图1,连接AC, OAOC,OACOCA,BABC,BACBCA,OACBC
18、AOCABCA,即OCBOAB90,OCBC,BC是O的切线;(2)解:补全图形如图2;证明:OAB90,BA是O的切线,又BC是O的切线,BABC,BABC,OAOC,BD是AC的垂直平分线,=,AOC120,AOBCOBCOE60,OBFF30,OFOB【考点】本题考查的是切线的判定、垂径定理、切线长定理的应用,掌握切线的判定定理、圆心角和弧之间的关系定理是解题的关键5、(1)见解析;(2)【解析】【分析】(1)如图2,当点O在ACB的内部,作直径,根据三角形外角的性质和等腰三角形的性质可得结论;如图3,当O在ACB的外部时,作直径CD,同理可理结论;(2)如图4,先根据(1)中的结论可得
19、AOB=120,由切线的性质可得OAP=OBP=90,可得OPA=30,从而得PA的长【详解】解:(1)如图2,连接CO,并延长CO交O于点D,OA=OC=OB,A=ACO,B=BCO,AOD=A+ACO=2ACO,BOD=B+BCO=2BCO,AOB=AOD+BOD=2ACO+2BCO=2ACB,ACB=AOB;如图3,连接CO,并延长CO交O于点D,OA=OC=OB,A=ACO,B=BCO,AOD=A+ACO=2ACO,BOD=B+BCO=2BCO,AOB=AOD-BOD=2ACO-2BCO=2ACB,ACB=AOB;(2)如图4,连接OA,OB,OP,C=60,AOB=2C=120,PA,PB分别与O相切于点A,B,OAP=OBP=90,APO=BPO=APB=(180-120)=30,OA=2,OP=2OA=4,PA= 【考点】本题考查了切线长定理,圆周角定理等知识,掌握证明圆周角定理的方法是解本题的关键