1、人教版九年级数学上册第二十五章概率初步章节练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、某轨道列车共有3节车厢,设乘客从任意一节车厢上车的机会均等,某天甲、乙两位乘客同时乘同一列轨道列车,则甲和乙从
2、同一节车厢上车的概率是()ABCD2、如图所示,平整的地面上有一个不规则图案(图中阴影部分),小明想了解该图案的面积是多少,他采取了以下办法:用一个长为,宽为的长方形,将不规则图案围起来,然后在适当位置随机地朝长方形区域扔小球,并记录小球落在不规则图案上的次数(球扔在界线上或长方形区域外不计实验结果),他将若干次有效实验的结果绘制成了所示的折线统计图,由此他估计不规则图案的面积大约为()ABCD3、某校有35名同学参加眉山市的三苏文化知识竞赛,预赛分数各不相同,取前18名同学参加决赛. 其中一名同学知道自己的分数后,要判断自己能否进入决赛,只需要知道这35名同学分数的( ).A众数B中位数C平
3、均数D方差4、在利用正六面体骰子进行频率估计概率的试验中,小颖同学统计了某一结果出现的频率,绘出的统计图如图所示,则符合这一结果的试验可能是()A朝上的点数是5的概率B朝上的点数是奇数的概率C朝上的点数大于2的概率D朝上的点数是3的倍数的概率5、抛掷一枚质地均匀的硬币时,正面向上的概率是0.5则下列判断正确的是()A连续掷2次时,正面朝上一定会出现1次B连续掷100次时,正面朝上一定会出现50次C连续掷次时,正面朝上一定会出现次D当抛掷次数越大时,正面朝上的频率越稳定于0.56、如图,在33的方格中,A,B,C,D,E,F分别位于格点上,从C,D,E,F四点中任意取一点,与点A,B为顶点作三角
4、形,则所作三角形为等腰三角形的概率是()A1BCD7、下列事件中是必然事件的是()A抛掷一枚质地均匀的硬币,正面朝上B随意翻到一本书的某页,这一页的页码是偶数C打开电视机,正在播放广告D任意画一个三角形,其内角和是1808、已知不透明的袋中只装有黑、白两种球,这些球除颜色外都相同,其中白球有2个,黑球有个,若随机地从袋子中摸出一个球,记录下颜色后,放回袋子中并摇匀,经过大量重复试验发现摸出白球的频率稳定在0.4附近,则的值为()A3B4C5D69、甲、乙是两个不透明的纸箱,甲中有三张标有数字,的卡片,乙中有三张标有数字,的卡片,卡片除所标数字外无其他差别,现制定一个游戏规则:从甲中任取一张卡片
5、,将其数字记为,从乙中任取一张卡片,将其数字记为若,能使关于的一元二次方程有两个不相等的实数根,则甲获胜;否则乙获胜则乙获胜的概率为()ABCD10、小明在一天晚上帮妈妈洗三个只有颜色不同的有盖茶杯,这时突然停电了,小明只好将茶杯和杯盖随机搭配在一起,那么三个茶杯颜色全部搭配正确的概率是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、小明和小亮做游戏,先是各自背着对方在纸上写一个自然数,然后同时呈现出来他们约定:若两人所写的数都是奇数或都是偶数,则小明获胜;否则,小亮获胜这个游戏对双方_(填“公平”或“不公平”)2、贵阳市2021年中考物理实验操作技能测试
6、中,要求学生两人一组合作进行,并随机抽签决定分组有甲、乙、丙、丁四位同学参加测试,则甲、乙两位同学分到同一组的概率是_3、袋中有五颗球,除颜色外全部相同,其中红色球三颗,标号分别为1,2,3,绿色球两颗,标号分别为1,2,若从五颗球中任取两颗,则两颗球的标号之和不小于4的概率为_4、有四张正面分别标有数字3,0,1,5的不透明卡片,它们除数字外其余全部相同现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为a,则使关于x的分式方程2有正整数解的概率为_5、儿童节期间,游乐场里有一种游戏的规则是:在一个装有6个红球和若干白球(每个球除颜色外,其它都相同)的袋中,随机摸一个球,摸到一个红球就
7、得欢动世界通票一张,已知参加这种游戏的有300人,游乐场为此游戏发放欢动世界通票60张,请你通过计算估计袋中白球的数量是_个三、解答题(5小题,每小题10分,共计50分)1、第24届北京冬奥会的开幕式中,“二十四节气的开幕式倒计时”向全世界人民展示了中华文化源远流长的特点,尽显中国式浪漫杨老师为了让学生深入的了解二十四节气,将每个节气的名称写在形状大小都一样的小卡片上,并将卡片倒扣在桌面上,邀请同学上讲台随机抽取一张卡片,并向大家介绍卡片上对应节气的含义(1)请问随机抽取一张卡片,上面写有“立春”的概率为 ;(2)若老师将属于春季的“立春、雨水,惊蛰、春分、清明、谷雨”六张卡片单独拿出,邀请小
8、明和小华同时抽取请利用画树状图或列表的方法,求两人抽到的卡片上写有相同的字的概率2、2021年9月7日,湖南永州郡祁学校的一则视频引发热议,视频显示,为教育中学生不要浪费粮食,该校高中部校长王立新站在垃圾桶边当众吃光学生剩饭剩菜这一举动在全国掀起了校园“光盘行动”某校为了让该校学生理解这次活动的重要性,校政教处在某天午餐后,随机调查部分同学就餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图(1)这次被调查的同学共有 名;(2)把条形统计图补充完整;(3)若政教处准备从九(2)班就餐光盘的2男1女三名学生中随机抽取两人进行菜品调研,问恰巧抽到1男1女的概率为多少?3、为落实国家“
9、双减”政策,立德中学在课后托管时间里开展了“音乐社团、体育社团、文学社团,美术社团”活动该校从全校600名学生中随机抽取了部分学生进行“你最喜欢哪一种社团活动(每人必选且只选一种)”的问卷调查,根据调查结果,绘制了如图所示的两幅不完整的统计图根据图中信息,解答下列问题(1)参加问卷调查的学生共有_人;(2)条形统计图中m的值为_,扇形统计图中的度数为_;(3)根据调查结果,可估计该校600名学生中最喜欢“音乐社团”的约有_人;(4)现从“文学社团”里表现优秀的甲、乙、丙、丁四名同学中随机选取两名参加演讲比赛,请用列表或画树状图的方法求出恰好选中甲和乙两名同学的概率4、在一个不透明的袋子里,装有
10、9个大小和形状一样的小球,其中3个红球、3个白球、3个黑球,它们已在袋子中被搅匀,现在有一个事件:从袋子中任意摸出n个球,红球、白球、黑球至少各有一个(1)当n为何值时,这个事件必然发生?(2)当n为何值时,这个事件不可能发生?(3)当n为何值时,这个事件可能发生?5、一个不透明的盒子中有2枚黑棋,3枚白棋,这些棋除颜色外无其它区别现将盒子中的棋摇匀,随机摸出一枚棋,不放回,再随机摸出一枚棋(1)请用列表法或画树状图法表示出所有可能的情况;(2)求摸出的2枚棋都是白棋的概率-参考答案-一、单选题1、C【解析】【分析】用树状图表示所有等可能的结果,再求得甲和乙从同一节车厢上车的概率【详解】解:将
11、3节车厢分别记为1号车厢,2号车厢,3号车厢,用树状图表示所有等可能的结果,共有9种等可能的结果,其中,甲和乙从同一节车厢上车的有3可能,即甲和乙从同一节车厢上车的概率是,故选:C【考点】本题考查概率,涉及画树状图求概率,是重要考点,难度较易,掌握相关知识是解题关键2、B【解析】【分析】本题分两部分求解,首先假设不规则图案面积为x,根据几何概率知识求解不规则图案占长方形的面积大小;继而根据折线图用频率估计概率,综合以上列方程求解【详解】假设不规则图案面积为x,由已知得:长方形面积为20,根据几何概率公式小球落在不规则图案的概率为: ,当事件A实验次数足够多,即样本足够大时,其频率可作为事件A发
12、生的概率估计值,故由折线图可知,小球落在不规则图案的概率大约为0.35,综上有:,解得故选:B【考点】本题考查几何概率以及用频率估计概率,并在此基础上进行了题目创新,解题关键在于清晰理解题意,能从复杂的题目背景当中找到考点化繁为简,创新题目对基础知识要求极高3、B【解析】【详解】分析:由于比赛取前18名参加决赛,共有35名选手参加,根据中位数的意义分析即可详解:35个不同的成绩按从小到大排序后,中位数及中位数之后的共有18个数,故只要知道自己的成绩和中位数就可以知道是否进入决赛了故选B点睛:本题考查了统计量的选择,以及中位数意义,解题的关键是正确的求出这组数据的中位数4、D【解析】【分析】计算
13、出各个选项中事件的概率,根据概率即可作出判断【详解】A、朝上的点数是5的概率为,不符合试验的结果;B、朝上的点数是奇数的概率为,不符合试验的结果;C、朝上的点数大于2的概率,不符合试验的结果;D、朝上的点数是3的倍数的概率是,基本符合试验的结果故选:D【考点】本题考查了频率估计概率,当试验的次数较多时,频率稳定在某一固定值附近,这个固定值即为概率5、D【解析】【分析】根据概率的意义即可得出答案【详解】解:A. 连续掷2次时,正面朝上有可能出现,还有可能不出现,故选项A判断不正确;B. 连续掷100次时,正面朝上不一定会出现50次,故选项B判断不正确;C. 连续掷次时,正面朝上不一定会出现次,故
14、选项C判断不正确;D. 当抛掷次数越大时,正面朝上的频率越稳定于0.5,正确,故选项D符合题意,故选:D【考点】本题考查的是模拟实验和概率的意义,熟知概率的定义是解答此题的关键6、D【解析】【分析】根据从C、D、E、F四个点中任意取一点,一共有4种可能,选取D、C、F时,所作三角形是等腰三角形,即可得出答案【详解】解:根据从C、D、E、F四个点中任意取一点,一共有4种可能,选取D、C、F时,所作三角形是等腰三角形,故P(所作三角形是等腰三角形)=故选D【考点】本题考查概率公式和等腰三角形的判定,解题关键是熟记随机事件A的概率P(A)=事件A可能出现的结果数所有可能出现的结果数的商7、D【解析】
15、【分析】逐项分析即可作出判断【详解】A、抛掷一枚质地均匀的硬币,正面朝上,这是随机事件,故不符合题意;B、随意翻到一本书的某页,这一页的页码是偶数,这是随机事件,故不符合题意;C、打开电视机,正在播放广告,这是随机事件,故不符合题意;D、任意画一个三角形,其内角和是180,这是必然事件,故符合题意;故选:D【考点】本题考查了随机事件与必然事件,理解它们的含义是关键8、A【解析】【分析】根据题意可得,然后进行求解即可【详解】解:由题意得:,解得:,经检验是原方程的解;故选A【考点】本题主要考查分式方程的解法及概率,熟练掌握分式方程的解法及概率是解题的关键9、C【解析】【分析】首先根据题意画出树状
16、图,然后由树状图求得所有等可能的结果,利用一元二次方程根的判别式,即可判定各种情况下根的情况,然后利用概率公式求解即可求得乙获胜的概率.【详解】(1)关于的一元二次方程有两个不相等的实数根,=b2-4a0,画树状图如下:由图可知,共有种等可能的结果,分别是a=,b=1,则=-10;a=,b=2,则=20;a=,b=1,则=0;a=,b=3,则=80;a=,b=2,则=30;a=1,b=1,则=-30;a=1,b=2,则=0;其中能使乙获胜的有种结果数,乙获胜的概率为,故选C【考点】本题考查的是用树状图法求概率,树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验10、
17、B【解析】【分析】根据题意, 分析可得三个只有颜色不同的有盖茶杯,将茶杯和杯盖随机搭配在一起, 共321=6种情况,结合概率的计算公式可得答案.【详解】解: 根据题意, 三个只有颜色不同的有盖茶杯, 将茶杯和杯盖随机搭配在一起, 共321=6种情况,而三个茶杯颜色全部搭配正确的只是其中一种;故三个茶杯颜色全部搭配正确的概率为.故选B.【考点】本题主要考查概率的计算,用到的知识点为: 概率=所求情况数与总情况数之比.二、填空题1、公平【解析】【详解】分析:根据题意画出符合要求的树状图,列出所有等可能的结果,并由此计算出两人各自获胜的概率进行比较,即可得到结论.详解:根据题意画出树状图如下:由图可
18、知:共有四种等可能结果出现,其中小明获胜的有两种,小亮获胜的也有两种,P(小明获胜)=,P(小亮获胜)=,P(小明获胜)=P(小亮获胜),该游戏是“公平”的.故答案为公平.点睛:本题的解题要点有两点:(1)能够画出符合题意的树状图;(2)在一个游戏中,当游戏双方获胜的概率相等时,游戏是公平的;当游戏双方获胜的概率不等是,游戏是不公平的.2、【解析】【分析】画树状图,共有12种等可能的结果,甲、乙两位同学分到同一组的结果有2种,再由概率公式求解即可【详解】解:画树状图如图:共有12种等可能的结果,甲、乙两位同学分到同一组的结果有4种,甲、乙两位同学分到同一组的概率为,故答案为:【考点】本题考查的
19、是用列表法或画树状图法求概率列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件用到的知识点为:概率所求情况数与总情况数之比3、#0.5【解析】【分析】画树状图,共有20个等可能的结果,两颗球的标号之和不小于4的结果有10个,再由概率公式求解即可【详解】画树状图如图:共有20个等可能的结果,两颗球的标号之和不小于4的结果有10个,两颗球的标号之和不小于4的概率为,故答案为:【考点】本题考查了列表法与树状图法以及概率公式,正确画出树状图是解题的关键4、 【解析】【详解】试题解析:解分式方程得:x=,x为正整数,=1或=2(是增根,舍去),解得:a=0,把a的值代入原方程解
20、方程得到的方程的根为1,能使该分式方程有正整数解的有1个,使关于x的分式方程有正整数解的概率为.考点:1.概率公式;2.解分式方程5、24【解析】【详解】解:设袋中共有m个红球,则摸到红球的概率P(红球)=解得m24故答案为24三、解答题1、 (1);(2) 【解析】【分析】(1)根据概率公式,用写有“立春”的卡片数除以总卡片数即可得出答案;(2)首先根据题意列出表格,然后由表格求得所有等可能的结果与小明和小华同时抽取到的卡片上写有相同字的情况,再利用概率公式求解即可求得答案;(1)解:解: 共有24张卡片,其中写有“立春”的卡片数为1, 抽取到写有“立春”的概率为;(2)解:立春雨水惊蛰春分
21、清明谷雨立春(立春,雨水)(立春,惊蛰)(立春,春分)(立春,清明)(立春,谷雨)雨水(雨水,立春)(雨水,惊蛰)(雨水,春分)(雨水,清明)(雨水,谷雨)惊蛰(惊蛰,立春)(惊蛰,雨水)(惊蛰,春分)(惊蛰,清明)(惊蛰,谷雨)春分(春分,立春)(春分,雨水)(春分,惊蛰)(春分,清明)(春分,谷雨)清明(清明,立春)(清明,雨水)(清明,惊蛰)(清明,春分)(清明,谷雨)谷雨(谷雨,立春)(谷雨,雨水)(谷雨,惊蛰)(谷雨,春分)(谷雨,清明) 共有30种等可能性的结果,其中写有相同字的有4种可能性,分别是:(谷雨,雨水)、(雨水,谷雨) 、(春分,立春)、(立春,春分); 两人抽到的卡片
22、上写有相同的字的概率为:P(抽到相同字)=【考点】本题考查了列表法与树状图法,利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m是解题的关键,然后利用概率公式计算事件A或事件B的概率2、 (1)100(2)见解析(3)【解析】【分析】(1)利用光盘的人数除以光盘的人数所占的百分比,即可求解;(2)求出剩少量的人数,即可求解;(3)根据题意,画出树状图,得到共有6种等可能结果,其中抽到的两名学生恰为1男1女的情况有4种,再利用概率公式即可求解(1)解:这次被调查的同学共有4040%100(名),故答案为:100;(2)解:剩少量的人数是;10040251520(名)
23、,把条形统计图补充完整如下;(3)解:画树状图如图:共有6种等可能结果,其中抽到的两名学生恰为1男1女的情况有4种,抽到的两名学生恰为1男1女的概率为【考点】本题主要考查了扇形统计图和条形统计图,利用树状图或列表法求概率,明确题意,从统计图中获取准确信息是解题的关键3、 (1)60(2)11,90(3)100(4)【解析】【分析】(1)根据B:体育社团的人数和人数占比即可求出参与调查的总人数;(2)根据(1)所求总人数即可求出m;用360度乘以C:文学社团的人数占比即可求出的度数;(3)用600乘以样本中最喜欢“音乐社团”的人数占比即可得到答案;(4)画树状图或列表先得到所有的等可能性的结果数
24、,然后找到符合题意的结果数,最后依据概率计算公式求解即可(1)解:(人),参加问卷调查的学生共有60人,故答案为:60;(2)解:由题意得:,故答案为:11;90;(3)解:(人),估计该校600名学生中最喜欢“音乐社团”的约有100人,故答案为:100;(4)解:设甲、乙、丙、丁四名同学分别用A,B,C,D表示,根据题意可画树状图或列表如下:第2人第1人ABCDAABACADBBABCBDCCACBCDDDADBDC由上图或上表可知,共有12种等可能的结果,符合条件的结果有2种,故恰好选中甲、乙两名同学的概率为【考点】本题主要考查了条形统计图与扇形统计图信息相关联,用样本估计总体,树状图或列
25、表法求解概率等等,正确读懂统计图是解题的关键4、(1)或8或9;(2)或2;(3)或4或5或6【解析】【分析】(1)当至少摸出七个球时,红球、白球、黑球至少各有一个;(2)当摸球个数不足3个时,不可能出现红球、白球、黑球至少各一个;(3)当摸球个数不小于3个,不超过6个时,这个事件可能发生.【详解】(1)当时,即或8或9时,这个事件必然发生(2)当时,即或2时,这个事件不可能发生(3)当时,即或4或5或6时,这个事件可能发生【考点】本题主要考查了事件的分类,明确必然事件,不可能事件以及随机事件的概念是解题的关键.5、 (1)作图见解析(2)摸出的2枚棋都是白棋的概率为【解析】【分析】(1)依据题意画树状图即可;(2)根据概率公式进行求解即可(1)解:树状图如图所示:(2)解:由图可知:不放回,摸两次棋子共有20种情况,摸出的2枚棋都是白棋共有6种情况,摸出的2枚棋都是白棋的概率为【考点】本题考查了画树状图法求概率,解题的关键在于画出正确的树状图