1、人教版九年级数学上册第二十二章二次函数必考点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、小明在研究抛物线(h为常数)时,得到如下结论,其中正确的是()A无论x取何实数,y的值都小于0B该抛物线的顶
2、点始终在直线上C当时,y随x的增大而增大,则D该抛物线上有两点,若,则2、如图,用一段长为30米的篱笆围成一个一边靠墙(墙的长度不限)的矩形菜园ABCD,设AB边长为x米,BC的长y米,菜园的面积为S(单位:平方米) 当x在一定范围内变化时,y和S都随x的变化而变化,则y与x,S与x满足的函数关系分别是()A一次函数关系,二次函数关系B反比例函数关系,二次函数关系C一次函数关系,反比例函数关系D反比例函数关系,一次函数关系3、矩形的周长为12cm,设其一边长为xcm,面积为ycm2,则y与x的函数关系式及其自变量x的取值范围均正确的是()Ay=x2+6x(3x6)By=x2+12x(0x12)
3、Cy=x2+12x(6x12)Dy=x2+6x(0x6)4、抛物线y3(x2)2+5的顶点坐标是()A(2,5)B(2,5)C(2,5)D(2,5)5、某超市销售一种商品,每件成本为元,销售人员经调查发现,该商品每月的销售量(件)与销售单价(元)之间满足函数关系式,若要求销售单价不得低于成本,为每月所获利润最大,该商品销售单价应定为多少元?每月最大利润是多少?()A元,元B元,元C元,元D元,元6、下列函数中,是二次函数的是()Ay6x2+1By6x+1CyDy+17、二次函数y=x2+px+q,当0x1时,此函数最大值与最小值的差()A与p、q的值都有关B与p无关,但与q有关C与p、q的值都
4、无关D与p有关,但与q无关8、关于二次函数的最大值或最小值,下列说法正确的是()A有最大值4B有最小值4C有最大值6D有最小值69、把函数的图象向右平移1个单位长度,平移后图象的函数解析式为()ABCD10、若函数y(a1)x2+2x+a21是二次函数,则()Aa1Ba1Ca1Da1第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,直线y=mx+n与抛物线y=ax2+bx+c交于A(1,p),B(4,q)两点,则关于x的不等式mx+nax2+bx+c的解集是_2、抛物线的顶点坐标为_3、由于被墨水污染,一道数学题仅能见到如下文字:已知二次函数yax2+bx+c的图象
5、过点(1,0),求证:这个二次函数的图象关于直线x=2对称,根据现有信息,得出有关这个二次函数的下列结论:过点(3,0);顶点(2,2);在x轴上截得的线段的长是2;与y轴的交点是(0,3),其中正确的是_(填序号)4、二次函数的图象开口向下,则m_5、如图,在平面直角坐标系中,矩形的顶点O落在坐标原点,点A、点C分别位于x轴,y轴的正半轴,G为线段上一点,将沿翻折,O点恰好落在对角线上的点P处,反比例函数经过点B二次函数的图象经过、G、A三点,则该二次函数的解析式为_(填一般式)三、解答题(5小题,每小题10分,共计50分)1、在“乡村振兴”行动中,某村办企业以,两种农作物为原料开发了一种有
6、机产品,原料的单价是原料单价的1.5倍,若用900元收购原料会比用900元收购原料少生产该产品每盒需要原料和原料,每盒还需其他成本9元市场调查发现:该产品每盒的售价是60元时,每天可以销售500盒;每涨价1元,每天少销售10盒 (1)求每盒产品的成本(成本原料费其他成本);(2)设每盒产品的售价是元(是整数),每天的利润是元,求关于的函数解析式(不需要写出自变量的取值范围);(3)若每盒产品的售价不超过元(是大于60的常数,且是整数),直接写出每天的最大利润2、如图,四边形ABCD顶点坐标分别为,抛物线经过A,B,D三点(1)请写出四边形AOCD是哪种特殊的平行四边形;(2)求抛物线的解析式;
7、(3)绕平面内一点M顺时针旋转90得到,即点A,B,C的对应点分别为,若恰好两个顶点落在抛物线上,求此时的坐标3、已知函数(1)若这个函数是一次函数,求的值(2)若这个函数是二次函数,求的取值范围4、某工艺厂设计了一款成本为每件元的产品,并投放市场进行试销,经过调查,发现每天的销售数量件与销售单价(元)存在一次函数关系(1)要使每天销售利润达到元,销售单价应定为每件多少元?(2)销售单价定为多少时,该厂每天获取的利润最大?最大利润是多少?5、某服装店以每件30元的价格购进一批T恤,如果以每件40元出售,那么一个月内能售出300件,根据以往销售经验,销售单价每提高1元,销售量就会减少10件,设T
8、恤的销售单价提高元(1)服装店希望一个月内销售该种T恤能获得利润3360元,并且尽可能减少库存,问T恤的销售单价应提高多少元?(2)当销售单价定为多少元时,该服装店一个月内销售这种T恤获得的利润最大?最大利润是多少元?-参考答案-一、单选题1、C【解析】【分析】根据二次函数的对称轴、二次函数图象上点的坐标特征、二次函数的性质,判断即可【详解】解:A,当时,当时, ,故错误;B抛物线的顶点坐标为,当时,故错误;C抛物线开口向下,当时,y随x的增大而增大,故正确;D抛物线上有两点,若,点A到对称轴的距离大于点B到对称轴的距离,故错误故选C【考点】本题考查了二次函数的性质,二次函数图象上点的坐标特征
9、,熟练掌握二次函数的性质是解题的关键2、A【解析】【分析】根据题意求得y和S与x的函数关系式,然后由函数关系式可直接进行判别即可【详解】解:由题意可知:,则,即,y与x满足一次函数关系菜园的面积:,S与x满足二次函数的关系故选A【考点】本题主要考查一次函数与二次函数的应用,熟练掌握一次函数与二次函数的应用是解题的关键3、D【解析】【分析】已知一边长为xcm,则另一边长为(6-x)cm,根据矩形的面积公式即可解答【详解】解:已知一边长为xcm,则另一边长为(6-x)cm则y=x(6-x)化简可得y=-x2+6x,(0x6),故选:D【考点】此题主要考查了根据实际问题列二次函数关系式的知识,解题的
10、关键是用x表示出矩形的另一边,此题难度一般4、C【解析】【分析】根据二次函数的性质ya(xh)2+k的顶点坐标是(h,k)进行求解即可.【详解】抛物线解析式为y=3(x-2)2+5,二次函数图象的顶点坐标是(2,5)故选C【考点】本题考查了二次函数的性质,根据抛物线的顶点式,可确定抛物线的开口方向,顶点坐标(对称轴),最大(最小)值,增减性等5、B【解析】【分析】设每月所获利润为w,按照等量关系列出二次函数,并根据二次函数的性质求得最值即可【详解】解:设每月总利润为,依题意得:,此图象开口向下,又,当时,有最大值,最大值为元故选:B【考点】本题考查了二次函数在实际生活中的应用,根据题意找到等量
11、关系并掌握二次函数求最值的方法是解题的关键6、A【解析】【分析】根据二次函数的定义求解【详解】解:A是二次函数,故本选项符合题意;B是一次函数,不是二次函数,故本选项不符合题意;C是反比例函数,不是二次函数,故本选项不符合题意;D等式的右边是分式,不是整式,不是二次函数,故本选项不符合题意;故选:A【考点】本题考查二次函数的基础知识,熟练掌握二次函数的意义是解题关键7、D【解析】【分析】分别求出函数解析式的最小值、当0x1时端点值即:当x=0和x=1时的函数值由二次函数性质可知此函数最大值与最小值必是其中的两个,通过比较可知差值与p有关,但与q无关【详解】解:依题意得:当时,端点值,当时,端点
12、值,当时,函数最小值,由二次函数的最值性质可知,当0x1时,此函数最大值和最小值是、其中的两个,所以最大值与最小值的差可能是或 或,故其差只含p不含q,故与p有关,但与q无关故选:【考点】本题考查了二次函数的最值问题,掌握二次函数的性质、灵活运用配方法是解题的关键8、D【解析】【分析】根据二次函数的解析式,得到a的值为2,图象开口向上,函数有最小值,根据定点坐标(4,6),即可得出函数的最小值【详解】解:在二次函数中,a=20,顶点坐标为(4,6),函数有最小值为6故选:D【考点】本题主要考查了二次函数的最值问题,关键是根据二次函数的解析式确定a的符号和根据顶点坐标求出最值9、C【解析】【分析
13、】抛物线在平移时开口方向不变,a不变,根据图象平移的口诀“左加右减、上加下减”即可解答【详解】把函数的图象向右平移1个单位长度,平移后图象的函数解析式为,故选:C【考点】本题考查了二次函数图象与几何变换,解答的重点在于熟练掌握图象平移时函数表达式的变化特点10、A【解析】【分析】利用二次函数定义进行解答即可【详解】解:由题意得:a10,解得:a1,故选:A【考点】本题主要考查了二次函数的定义,准确计算是解题的关键二、填空题1、x4【解析】【分析】数形结合,将不等式mx+nax2+bx+c的解集转化为直线y=mx+n在抛物线y=ax2+bx+c的上方时对应的x的范围即可【详解】由图像可得,当x4
14、时,直线y=mx+n在抛物线y=ax2+bx+c的上方,不等式mx+nax2+bx+c的解集是:x4故答案为:x4【考点】本题主要考查二次函数、一次函数与不等式的关系,数形结合思想的运用是解题关键2、 (1,8)【解析】【分析】根据题意可知,本题考察二次函数的性质,根据二次函数的顶点式,进行求解【详解】解:由二次函数性质可知,的顶点坐标为(,)的顶点坐标为(1,8)故答案为:(1,8)【考点】本题考查了二次函数的性质,先把函数解析式配成顶点式根据顶点式即可得到顶点坐标3、【解析】【分析】利用抛物线的对称性得到抛物线与轴的另一个交点坐标为,从而得到抛物线在轴上截得的线段的长,利用和对称轴方程不能
15、确定顶点的纵坐标和的值.【详解】二次函数的图象过点,对称轴为直线,抛物线与轴的另一个交点坐标为,抛物线在轴上截得的线段的长是.故答案为:.【考点】本题考查了抛物线与轴的交点:把求二次函数(,是常数,)与轴的交点坐标问题转化解.关于的一元二次方程即可求得交点横坐标.4、【解析】【分析】根据二次函数的图象开口向下可得,求解即可【详解】解:二次函数的图象开口向下,解得:,故答案为:【考点】本题考查了二次函数图像与系数的关系,熟知一元二次方程,开口向上;,开口向下是解本题的关键5、【解析】【分析】先由题意得到,再设设,由勾股定理得到,解得x的值,最后将点C、G、A坐标代入二次函数表达式,即可得到答案.
16、【详解】解:点,反比例函数经过点B,则点,则,设,则,由勾股定理得:,解得:,故点,将点C、G、A坐标代入二次函数表达式得:,解得:,故答案为【考点】本题考查求二次函数解析式,解题的关键是熟练掌握待定系数法.三、解答题1、(1)每盒产品的成本为30元(2);(3)当时,每天的最大利润为16000元;当时,每天的最大利润为元【解析】【分析】(1)设原料单价为元,则原料单价为元然后再根据“用900元收购原料会比用900元收购原料少”列分式方程求解即可;(2)直接根据“总利润=单件利润销售数量”列出解析式即可;(3)先确定的对称轴和开口方向,然后再根据二次函数的性质求最值即可【详解】解:(1)设原料
17、单价为元,则原料单价为元依题意,得解得,经检验,是原方程的根每盒产品的成本为:(元)答:每盒产品的成本为30元(2);(3)抛物线的对称轴为=70,开口向下当时,a=70时有最大利润,此时w=16000,即每天的最大利润为16000元;当时,每天的最大利润为元【考点】本题主要考查了分式方程的应用、二次函数的应用等知识点,正确理解题意、列出分式方程和函数解析式成为解答本题的关键2、 (1)四边形AOCD是矩形;(2);(3)或【解析】【分析】(1)根据,可得CD/y轴,AD/x轴,得出四边形AOCD是平行四边形,根据AOC= 90,可得四边形AOCD是矩形;.(2)设抛物线的解析式为,把,代入得
18、函数解析式;(3)分三种情况讨论:当点A1,C1落在抛物线上时;当点D1落在抛物线上时;当点C1,D1落在抛物线上时,分别求出点A1的坐标(1)四边形AOCD是矩形,理由如下:,CD/y轴,AD/x轴,四边形AOCD是平行四边形,又AOC= 90,四边形AOCD是矩形;.(2)设抛物线的解析式为,把,代入得:解得:即抛物线的解析式为:;(3),AD = 1,CD =,由(1)得,四边形AOCD是矩形,ADC = 90,由旋转可知:,A1C1D1恰好两个顶点落在抛物线上,分三种情况讨论:当点A1,C1落在抛物线上时,A1D1/y轴,C1D1/z轴,如图2,设则,即,即整理得:,+得:,解得:,当
19、时,;当点D1落在抛物线上时,点A1不可能落在抛物线上,如图3,当点C1,D1落在抛物线上时,A1D1/y轴,C1D1/z轴,如图4,此时C1、D1关于抛物线的对称轴对称,抛物线的对称轴为直线,设则:,又解得:A1D1 = 1,把代入得:解得:综上所述,若A1C1D1恰好两个顶点落在抛物线上,此时A1的坐标为或【考点】本题是二次函数综合题,考查了二次函数的性质,待定系数法求解析式,轴对称的性质,旋转的性质,利用分类讨论思想解决问题是本题的关键3、(1);(2)【解析】【分析】(1)根据一次函数的定义即可解决问题;(2)根据二次函数的定义即可解决问题;【详解】解:(1)由题意得,解得;(2)由题
20、意得,解得且【考点】本题考查一次函数的定义、二次函数的定义,解题的关键是熟练掌握基本概念,(1)根据二次项的系数等于零,一次项的系数不等于零;(2)根据二次项的系数不等于零,可得方程,根据解方程,可得答案4、(1)要使每天销售利润达到元,销售单价应定为每件元或元;(2)销售单价定为每件元时,该厂每天获取的利润最大,最大利润是元【解析】【分析】(1)根据利润(售价-进价)销量,列方程即可解答(2)设每天的销售利润为元,根据题意可以列出利润与销售单价之间的函数关系式,然后根据二次函数的性质,即可解答【详解】(1)由题意得解得:或答:要使每天销售利润达到元,销售单价应定为每件元或元.(2)设每天的销
21、售利润为元,由题意得当时,即销售单价为元时,取最大值答:销售单价定为每件元时,该厂每天获取的利润最大,最大利润是元【考点】本题考查了二次函数的应用,解题关键是明确题意,结合二次函数的性质解答5、(1)2元;(2)当服装店将销售单价50元时,得到最大利润是4000元【解析】【分析】(1)根据题意,通过列一元二次方程并求解,即可得到答案;(2)设利润为M元,结合题意,根据二次函数的性质,计算得利润最大值对应的的值,从而得到答案【详解】(1)由题意列方程得:(x40-30) (300-10x)3360 解得:x12,x218要尽可能减少库存,x218不合题意,故舍去T恤的销售单价应提高2元;(2)设利润为M元,由题意可得: M(x40-30)(300-10x)-10x2200x3000 当x10时,M最大值4000元销售单价:401050元当服装店将销售单价50元时,得到最大利润是4000元【考点】本题考查了一元二次方程、二次函数的知识;解题的关键是熟练掌握一元二次方程、二次函数的性质,从而完成求解