1、九年级数学上册第二十一章一元二次方程专题练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、把方程x2+2x5(x2)化成ax2+bx+c0的形式,则a,b,c的值分别为()A1,3,2B1,7,10C1
2、,5,12D1,3,102、对于一元二次方程,下列说法:若,则;若方程有两个不相等的实根,则方程必有两个不相等的实根;若是方程的一个根,则一定有成立;若是一元二次方程的根,则其中正确的有()A个B个C个D个3、不论x、y为什么实数,代数式的值()A可为任何实数B不小于7C不小于2D可能为负数4、下列一元二次方程中,没有实数根的是()ABCD5、用配方法解方程时,下列变形正确的是()ABCD6、若2-是方程x2-4x+c=0的一个根,则c的值是()A1B3-C1+D2+7、关于x的方程x24kx2k24的一个解是2,则k值为()A2或4B0或4C2或0D2或28、元旦当天,小明将收到的一条微信,
3、发送给若干人,每个收到微信的人又给相同数量的人转发了这条微信,此时收到这条微信的人共有157人,则小明给多少人发了微信()A10B11C12D139、用配方法解方程的根为()A2B-2C-2+D2-10、如果关于的一元二次方程有两个实数根,那么的取值范围是()AB且C且D第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,将边长为4的正方形ABCD沿对角线AC剪开,再把ABC沿着AD方向平移得到ABC,若两个三角形重叠部分的面积为3,则它移动的距离AA等于 _;移动的距离AA等于 _时,两个三角形重叠部分面积最大2、对于任意实数a、b,定义一种运算:,若,则x的值为_
4、3、已知关于的方程的一个根是1,则_4、若关于x的一元二次方程有两个不相等的实数根,则m的值可以是_(写出一个即可)5、已知关于x的一元二次方程的一个根比另一个根大2,则m的值为_三、解答题(5小题,每小题10分,共计50分)1、解方程:2、某医疗器械生产厂生产某种医疗器械,80条生产线齐开,每条生产线每个月可生产8台该种医疗器械该厂经过调研发现:当生产线适当减少后(减少的条数在总条数的20%以内时),每减少10条生产线,每条生产线每个月反而会多生产4台若该厂需要每个月的产能达到840台,那么应减少几条生产线?3、已知:如图所示,在ABC中,B90,AB5cm,BC7cm,点P从点A开始沿AB
5、边向点B以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动,当其中一点到达终点后,另外一点也随之停止运动(1)如果P、Q分别从A、B同时出发,那么几秒后,PBQ的面积等于4cm2?(2)在(1)中,PQB的面积能否等于7cm2?请说明理由4、若m是方程x2+x10的一个根,求代数式m3+2m2+2019的值5、如图,在矩形ABCD中,AB12 cm,BC6 cm点P沿AB边从点A开始向点B以2 cm/s的速度移动,点Q沿DA边从点D开始向点A以1 cm/s的速度移动如果点P,Q同时出发,用t(s)表示移动的时间(0t6),那么当t为何值时,QAP的面积等于8 cm2?-
6、参考答案-一、单选题1、D【解析】【分析】先把x2+2x5(x2)化简,然后根据一元二次方程的一般形式即可得到a、b、c的值【详解】解:x2+2x5(x2),x2+2x5x10,x2+2x5x+100,x23x+100,则a1,b3,c10,故选:D【考点】此题主要考查了一元二次方程化为一般形式,熟练掌握一元二次方程的一般形式是解题的关键2、C【解析】【分析】按照方程的解的含义、一元二次方程的实数根与判别式的关系、等式的性质、一元二次方程的求根公式等对各选项分别讨论,可得答案【详解】解:若a+b+c=0,则x=1是方程ax2+bx+c=0的解,由一元二次方程的实数根与判别式的关系可知:=b2-
7、4ac0,故正确;方程ax2+c=0有两个不相等的实根,=0-4ac0,-4ac0则方程ax2+bx+c=0的判别式=b2-4ac0,方程ax2+bx+c=0必有两个不相等的实根,故正确;c是方程ax2+bx+c=0的一个根,则ac2+bc+c=0,c(ac+b+1)=0,若c=0,等式仍然成立,但ac+b+1=0不一定成立,故不正确;若x0是一元二次方程ax2+bx+c=0的根,则由求根公式可得:x0=,2ax0+b=,b2-4ac=(2ax0+b)2,故正确故正确的有,故选:C【考点】本题考查一元二次方程根的判断,根据方程形式,判断根的情况是求解本题的关键3、C【解析】【分析】要把代数式进
8、行拆分重组凑完全平方式,来判断其值的范围具体如下:【详解】(x22x1)(y24y4)2(x1)2(y2)22,(x1)20,(y2)20,(x1)2(y2)222,2故选:C【考点】主要利用拆分重组的方法凑完全平方式,把未知数都凑成完全平方式,就能判断该代数式的值的范围要求掌握完全平方公式,并会熟练运用4、D【解析】【分析】分别计算出每个方程的判别式即可判断【详解】A、=4-410=40,方程有两个不相等的实数根,故本选项不符合题意;B、=16-41(-1)=200,方程有两个不相等的实数根,故本选项不符合题意;C、=25-432=10,方程有两个不相等的实数根,故本选项不符合题意;D、=1
9、6-423=-80,方程没有实数根,故本选项正确;故选:D【考点】本题考查了根的判别式,一元二次方程根的情况与判别式的关系:(1)0方程有两个不相等的实数根;(2)=0方程有两个相等的实数根;(3)0方程没有实数根5、B【解析】【分析】将方程的常数项移到右边,两边都加上,左边化为完全平方式,右边合并即可得到结果【详解】移项得:,配方得:,即,故选:B【考点】本题考查了解一元二次方程-配方法,利用此方法解方程时,首先将方程二次项系数化为1,常数项移到右边,两边都加上一次项系数一半的平方,左边化为完全平方式,右边合并,利用平方根定义开方转化为两个一元一次方程来求解6、A【解析】【分析】把2代入方程
10、x24x+c=0就得到关于c的方程,就可以解得c的值【详解】把2代入方程x24x+c=0,得(2)24(2)+c=0,解得:c=1故选A【考点】本题考查的是一元二次方程的根即方程的解的定义能使一元二次方程左右两边相等的未知数的值是一元二次方程的解又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根7、B【解析】【分析】把x=-2代入方程即可求得k的值;【详解】解:将x=-2代入原方程得到:,解关于k的一元二次方程得:k=0或4,故选:B【考点】此题主要考查了解一元二次方程相关知识点,代入解求值是关键8、C【解析】【分析】设小明发短信给x个人,根据每人
11、只转发一次可得第一次转发共有(x+1)人收到了短信,第二次转发有(1+x+x2)人收到了短信,由题意可得方程人收到了短信=157,再解方程即可【详解】解:设小明发短信给x个人,由题意得:1+x+x2=157,解得:x1=12,x2=-13(不合题意舍去),答:小明发短信给12个人,故选:C【考点】此题主要考查了一元二次方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程9、B【解析】【分析】根据用配方法解方程的步骤,先简化系数、移项、配方等步骤可解出方程的解.【详解】配方得,开方得,即,故选B.【考点】此题考查了一元二次方程-配方法,熟练掌握完全平方公式是解决此题的关键.10、C【解
12、析】【分析】根据关于x的一元二次方程kx2-3x+1=0有两个实数根,知=(-3)2-4k10且k0,解之可得【详解】解:关于x的一元二次方程kx2-3x+1=0有两个实数根,=(-3)2-4k10且k0,解得k且k0,故选:C【考点】本题主要考查根的判别式与一元二次方程的定义,一元二次方程ax2+bx+c=0(a0)的根与=b2-4ac有如下关系:当0时,方程有两个不相等的两个实数根;当=0时,方程有两个相等的两个实数根;当0时,方程无实数根上面的结论反过来也成立二、填空题1、 1cm或3cm#3cm或1cm 2cm【解析】【分析】如图,设交于 交于证明四边形是平行四边形,证明是等腰直角三角
13、形,也是等腰直角三角形,设cm,则 再利用面积公式建立方程,解方程即可,同时利用配方法求解面积最大值时的平移距离.【详解】解:如图,设交于 交于 由平移的性质可得: 四边形是平行四边形,由正方形可得: 是等腰直角三角形,同理:也是等腰直角三角形,设cm,则 解得: cm或cm 重叠部分的面积为: 当时,重叠部分的面积最大,最大面积为4cm2所以当cm时,重叠部分的面积最大.故答案为:1cm或3cm;2cm【考点】本题考查的是正方形的性质,平行四边形的判定,等腰直角三角形的判定与性质,一元二次方程的解法,配方法的应用,平移的性质,熟悉以上基础知识是解题的关键.2、或2【解析】【分析】根据新定义的
14、运算得到,整理并求解一元二次方程即可【详解】解:根据新定义内容可得:,整理可得,解得,故答案为:或2【考点】本题考查新定义运算、解一元二次方程,根据题意理解新定义运算是解题的关键3、【解析】【分析】根据题意可得出1+6+m2-2m+5=0,然后解出该方程的解即可【详解】解:方程的一个根是1,1+6+m2-2m+5=0,m2-2m=-12, 2(m2-2m)=-24故答案为:-24【考点】本题考查一元二次方程的解,解题的关键是明确题意,找出所求问题需要的条件4、0(答案不唯一)【解析】【分析】根据一元二次方程根的判别式求出的取值范围,由此即可得出答案【详解】解:由题意得:此一元二次方程根的判别式
15、,解得,则的值可以是0,故答案为:0(答案不唯一)【考点】本题考查了一元二次方程根的判别式,熟练掌握一元二次方程根的判别式是解题关键5、1【解析】【分析】利用因式分解法求出x1,x2,再根据根的关系即可求解【详解】解(x-3m)(x-m)=0x-3m=0或x-m=0解得x1=3m,x2=m,3m-m=2解得m=1故答案为:1【考点】此题主要考查解一元二次方程,解题的关键是熟知因式分解法的运用三、解答题1、【解析】【分析】将原方程整理,移项,令,然后解关于t的一元二次方程,获得t的值,代回原方程即可求解【详解】移项,整理得:令,原式变为解得,(舍去),即解得,故答案为 ,【考点】本题考查了换元法
16、解一元二次方程,问题的关键是令,然后解关于t的一元二次方程,一定要注意舍去不合理的根2、10【解析】先设减少x台生产线,求出x的取值范围,接下来通过相等关系列出方程求解即可【详解】解:设减少x台生产线8020=16,即 解得:,(舍去),所以应减少10条生产线【考点】本题主要考查了一元二次方程的应用,解决本题的关键是读懂题意,找到相等关系,列出方程,同时要注意自变量的取值范围即可3、(1)1秒;(2)不可能,见解析【解析】【分析】(1)经过x秒钟,PBQ的面积等于4cm2,根据点P从A点开始沿AB边向点B以1cm/s的速度移动,点Q从B点开始沿BC边向点C以2cm/s的速度移动,表示出BP和B
17、Q的长可列方程求解;(2)看PBQ的面积能否等于7cm2,只需令2x(5x)7,化简该方程后,判断该方程的与0的关系,大于或等于0则可以,否则不可以【详解】解:(1)设经过x秒以后PBQ面积为4cm2,根据题意得(5x)2x4,整理得:x25x+40,解得:x1或x4(舍去)答:1秒后PBQ的面积等于4cm2;(2)由(1)同理可得(5x)2x7整理,得x25x+70,因为b24ac25280,所以,此方程无解所以PBQ的面积不可能等于7cm2【考点】本题主要考查一元二次方程的应用,关键在于理解清楚题意,找出等量关系列出方程求解,判断某个三角形的面积是否等于一个值,只需根据题意列出方程,判断该
18、方程是否有解,若有解则存在,否则不存在4、2020【解析】【分析】根据一元二次方程的解的定义,将x=m代入已知方程求得m(m+1)=1;然后将所求的代数式转化为含有m(m+1)的代数式,并代入求值即可【详解】解:根据题意,得,或m(m+1)=1,m3+2m2+2019【考点】本题主要考查了方程的解的定义方程的根即方程的解,就是能使方程左右两边相等的未知数的值5、当t为2或4时,QAP的面积等于8 cm2【解析】【分析】当运动时间为t s时,AP2t cm,AQ(6t)cm,利用三角形的面积计算公式,结合QAP的面积等于8cm2,即可得出关于t的一元二次方程,解之即可得出t的值【详解】解:当运动时间为t s时,AP2t cm,AQ(6t)cm,依题意得2t(6t)8,整理得t26t80,解得t12,t24,当t为2或4时,QAP的面积等于8 cm2【考点】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键